
NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 1 / 17

NLQTI: Dutch Profile for Question and

Test Interoperability

Tests

Version: V1.0 (November 2012)

© 2012 Kennisnet.nl

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 2 / 17

Table of Contents

1 Inleiding—3
1.1 Additional documents—3
1.1.1 Profile documents—3
1.1.2 Other documents and sources of information—3

2 QTI Tests functional description—4
2.1 Anatomy of a QTI Test—4
2.2 Functional description—5
2.3 Anatomy of a test according to the profile—6

3 QTI test structure—8
3.1 assessmentTest level—8
3.2 testPart level—8
3.3 Main assessmentSection level—8
3.4 sub assessmentSection level—9
3.5 assessmentItemRef level—10
3.5.1 Weight of an item—10

4 Dynamic tests—11
4.1 <selection> element—11
4.2 <ordering> element—11

5 Response en feedback processing—12
5.1 Functional description—12
5.1.1 Score—12
5.1.2 Feedback—12
5.2 Technical implementation—12
5.2.1 Elements: <outcomeDeclaration>—12
5.2.2 Element: <outcomeProcessing>—14
5.2.3 Elements: <testFeedback>—16

6 Additional elements—17
6.1 <timeLimits> element—17
6.2 <itemSessionControl> element—17

Colophon

Project team: Jim Bijlstra; Jeroen Hamers; Marjolijn van Hooff; Erik Siegel

Author(s): Erik Siegel

Consulted experts: Wouter Huijnink; Bieke vd Korst

Consulted organizations: Andriessen; Boom Test Uitgevers; Bureau ICE; Citaverde College;
CITO; College van Examens; De Rode Planeet; Deviant; Edu’Actief;
Efinity; Malmberg; Noordhoff Uitgevers; Orange11; Paragin;
Platform VVVO;Roadside; SURF; ThiemeMeulenhoff; Threeships;

Document history

Versie Datum Omschrijving

V0.91 April 2011 Eerste uitwerking voor plateau 2

V0.92 Mei 2012 Kleine tekstuele bijstellingen n.a.v. expert groep bijeenkomst

V0.93 Sep 2012 Translated to English

V1.0 November 2012 Small textual changes and typos. Abbreviation changed to NLQTI. Colo-

phon added. Final version.

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 3 / 17

1 Inleiding

This document is part of the technical documentation set for the Dutch Profile for Question and
Test Interoperability, a.k.a. NLQTI. The full set of documents is listed in [NLQTI-ICS] (see
sect. 1.1/pg. 3). Their goal is to supply content and software developers with enough information
to implement this profile.

A common introduction and general information can be found in the document “NLQTI: Dutch
Profile for Question and Test Interoperability – Introduction and Common Sections”.

This part of the profile describes:

 QTI Tests. Technically these are the QTI documents with root element <assessmentTest>

 The response and feedback processing for tests

1.1 Additional documents

1.1.1 Profile documents

The Dutch Profile for Question and Test Interoperability consists of the following documents:

[NLQTI-AB] NLQTI: Dutch Profile for Question and Test Interoperability - Algemene
beschrijving toepassingsprofiel op basis van IMS QTI v2.1
Functional description of the profile, Dutch only.

[NLQTI-ICS] NLQTI: Dutch Profile for Question and Test Interoperability – Introduction and
common sections
Common parts of the profile.

[NLQTI-ITEM] NLQTI: Dutch Profile for Question and Test Interoperability - Items
Description of items within this profile.

[NLQTI-TEST] Dutch Profile for Question and Test Interoperability - Tests
Description of tests within this profile

[NLQTI-CP] NLQTI: Dutch Profile for Question and Test Interoperability - Content Packaging
Describes the way items and tests should be packaged according to this profile.

1.1.2 Other documents and sources of information

A list with further additional documents and other sources of information can be found in
[NLQTI-ICS].

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 4 / 17

2 QTI Tests functional description

A QTI test can become quite complicated. You can influence things like:

 How a test can be divided into sections. Sections consist of (references to) items and/or fur-

ther sub-sections.

 Every referenced item and (sub)section has many properties. For instance the time the

learner is allowed to spend, how often it can be done, when and how feedback is shown, etc.

 Before it is presented to the learner, a test (or section of a test) can compose itself. For in-

stance from a section containing 100 items, 10 are selected at random and presented to the
learner

 Adaptive questioning: A test can specify a dynamic path through the content, based on the

performance of the learner. For instance, if you have more than 10 points at this stage of the
test, skip the next section and go directly to the bonus section.

 Perform computations during and at the end of a test, for instance to calculate an overall
score.

This profile reduces the complexity and eases implementation of software handling QTI. To un-
derpin the choices made, this chapter handles QTI tests in more detail and presents the choices
made on an overview level.

2.1 Anatomy of a QTI Test

If we look at a QTI Test in some more detail, this is how it is structured:

Top to bottom:

 assessmentTest level: Coordinating level for the full test.

 outcomeDeclaration, outcomeProcessing, testFeedback: Handles results processing

and feedback for the full test. The options here are however considerable less functional
than those for items.
For instance, the ―template mechanism‖ we used in items is lacking. As a consequence, we
cannot use fixed processing templates and have to prescribe its content.

asssesmentItemRef

niveau

assessmentSection

niveau

testPart niveau

assessmentTest niveau

assessmentTest

outcomeDeclaration

outcomeProcessing

testFeedback

timeLimits testPart's

navigationMode

submissionMode
itemSessionControl timeLimits testFeedback assessmentSection

preCondition's

branchRule's

itemSessionControl timeLimits
selection

ordering
rubricBlock assessmentItemRef assessmentSection

preCondition's

branchRule's

itemSessionControl timeLimits
preCondition's

branchRule's
variableMapping weight templateDefault

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 5 / 17

 timeLimits: Time limits for the test as a whole

 testPart: A test consists of one or more testPart’s:

 testPart level: Main section level for a test.

 navigationMode, submissionMode: Properties for determining how a learner can navigate

through the section (linear or at random) and when results processing is performed (only
at the end or after every item)

 itemSessionControl: Properties for the underlying assessmentItem’s. For instance, how

often can a learner retry an item.

 timeLimits: Time limits for this testPart

 testFeedback: Specific feedback for this testPart

 preCondition, branchRule: Properties to make this testPart adaptive. Do we have to

show this testPart at all and/or what’s the next testPart to show.

 asssessmentSection: A testPart consists of one or more assessmentSection’s

 assessmentSection level: Sub-section level for a test. An assessmentSection can contain

assessmentSection’s recursively.

 preCondition, branchRule: Properties to make this assessmentSection adaptive. Do we

have to show this assessmentSection at all and/or what’s the next section to show.

 itemSessionControl: Properties for the underlying assessmentItem’s. It overrules set-

tings made on higher levels.

 timeLimits: Time limits for this assessmentSection

 selection, ordering: Properties for ordering and selecting parts of this section before the

test is done. For instance, do we need a random subset of this section and should its order
be randomized.

 rubricBlock: An optional block with additional text or other information belonging to this

assessmentSection. For instance the main text all items are about.

 assessmentItemRef: Zero or more references to items

 assessmentSection: Zero or more assessmentSection’s.

 assessmentItemRef level: A reference to an item with several test specific properties:

 A reference to an item with the following settings:

 preCondition, branchRule: Properties to make this item adaptive. Do we have to show

this at all and/or what’s the next item/section to show.

 itemSessionControl: Properties for this item. It overrules settings made on higher levels.

 timeLimits: Time limits for his specific item

 variableMapping: An addition to map the item’s outcome variables to other names (to

aliases).

 weight: Property to give the score for this item a certain weight in the overall score..

 templateDefault: Property for the template facility of items. Templates are not allowed in

this profile.

2.2 Functional description

The following choices were made to limit the complexity of tests for this profile:

1) Limit all the options QTI offers for structuring a test to: A single testPart a single

(main)assessmentSection zero or more (sub)assessmentSection’s (prohibiting further

nesting of assessmentSection’s).

Underpinning:

 A QTI test’s structure can become arbitrarily complex. This will probably not be supported

by all authoring and rendering systems. Limiting the structure’s complexity greatly en-
hances the chances for support. The structure proposed is used in the Netherlands.

 A first layer of assessmentSection is necessary because a rubricBlock can be defined at

assessmentSection level only. This rubricBlock can contain information for the learner

for the complete test (if a rubricBlock was defined at the testPart level also, this layer

wouldn’t have been necessary).

 The second assessmentSection layer is necessary to keep questions together in a group.

This creates the option for arranging singular questions and question groups (for which the
questions must stay together).

2) Limit the options for setting time limits to the full test and the item level. Do not allow setting
time limits on the level(s) in between.
Underpinning: Setting limits on all levels is not an often requested requirement. When allowed

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 6 / 17

it will increase complexity handling timers and time limits. Time limits at top and bottom level
seems enough for now.

3) Limit the options for feedback to the highest level (assessmentTest) only. Only allow feed-

back at the end of the test based on passed/failed.
Underpinning: The requirement for more complex feedback during a test absolutely exists.
However, allowing this would also mean a much more complex results processing. If we limit
it as proposed, we can work with fixed results processing. If we don’t, all engines must sup-
port the QTI programming language, something we’re trying to avoid to ease implementation.

4) Do not allow the options for adaptive testing
Underpinning: Allowing adaptive tests increases the complexity of the authoring and rendering
systems manifold. This conflicts with the points of departure for this profile (see

[NLQTI-ICS]).

5) Only allow the following results processing:

 Computing the score based on the weighted total of the individual item scores

 Controlling feedback

Underpinning: There seems to be no requirement for more complex computations of the end
score. Allowing simple feedback is a user requirement.

6) Limit the options for specifying the itemSessionControl to the main testPart (highest level,

for all items) and the individual item references.
Underpinning: Because we limited the test’s structure (see point 1 above), detailed control is
unnecessary and will only result in superfluous complexity. Setting this only once with the op-
tion to override it on an item level suffices.

7) A reference to a question (assessmentItemRef) is only allowed to contain a single scoring

weight (for computing the overall score).
underpinning: We only have a single overall score, so defining more than one weight is un-
necessary.

2.3 Anatomy of a test according to the profile

Combining the anatomy of a test with the functional descriptions, a test within this profile looks
as follows (left out parts are show in a lighter color):

asssesmentItemRef

niveau

(hoofd)

assessmentSection

niveau

testPart niveau

assessmentTest niveau

assessmentTest

outcomeDeclaration

outcomeProcessing

testFeedback

timeLimits testPart

navigationMode

submissionMode
itemSessionControl timeLimits testFeedback assessmentSection

preCondition's

branchRule's

itemSessionControl timeLimits
selection

ordering
rubricBlock assessmentItemRef

(sub)

assessmentSection

preCondition's

branchRule's

itemSessionControl timeLimits
preCondition's

branchRule's
variableMapping weight templateDefault

1 x

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 7 / 17

Examples of tests according to the profile can be found in the accompanying example files..

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 8 / 17

3 QTI test structure

3.1 assessmentTest level

A QTI test is a separate XML document for which the root element is always <assessmentTest>.

Attributes for <assessmentTest>:

Naam Prf? M Type Remarks

identifier Yes 1 string Preferably, an identifier should adhere to the

rules stated in [KN-PID]

title Yes 1 string

toolName Yes ? string256 See [NLQTI-ICS], sect. 4.3

toolVersion Yes ? string256

Sub-elements of <assessmentTest>:

Naam Prf? M Remarks

outcomeDeclaration Lim * See sect. 5.2.1/pg. 12

timeLimits Yes ? See sect. 6.1/pg. 17

testPart Lim 1 See sect. par. 3.2/pg. 8

outcomeProcessing Lim ? See sect. 5.2.2/pg. 14

testFeedback Lim * See sect. 5.2.3/pg. 16

3.2 testPart level

The first level for QTI tests is testPart. The profile only allows a single testPart.

Attributes of <testPart>:

Naam Prf? M Type Remarks

identifier Yes 1 string

navigationMode Yes 1 string Values:

- linear: The learner is allowed to handle the

items ordered only. He/she is not allowed to

navigate between items at random.

- nonlinear: The learner is allowed to navi-

gate between items at random

submissionMode Yes 1 string Values:

- individual: The results of an item are

handled when finishing the item

- simultaneous: The results of all items are

handled all together at the end of the test

Watch out: simultaneous mode also means that

feedback on item level will not occur! All results

processing, including feedback handling, is post-

poned until the end of the test.

Sub-elements of <testPart>:

Naam Prf? M Remarks

preCondition No

branchRule No

itemSessionControl Yes ? See sect. 6.2/pg. 17

timeLimits No

assessmentSection Lim 1 See sect. 3.3/pg. 8

testFeedback No

3.3 Main assessmentSection level

The profile defines underneath the testPart level a single <assessmentSection> element. This is

called the main assessmentSection level.

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 9 / 17

Attributes of the main <assessmentSection> element:

Naam Prf? M Type Remarks

identifier Yes 1 string

required No No meaning/implication for the main level

fixed No No meaning/implication for the main level

title Yes 1 string

visible Lim 1 boolean Always true for the main level (has no mean-

ing/implication but is a mandatory attribute)

keepTogether No No meaning/implication for the main level

Sub-elements of the main <assessmentSection> element:

Naam Prf? M Remarks

preCondition No

branchRule No

itemSessionControl No

timeLimits No

selection Yes ? See sect. 4.1/pg. 11

ordering Yes ? See sect. 4.2/pg. 11

rubricBlock Yes *

assessmentItemRef Yes * See sect. 3.5/pg. 10

assessmentSection Yes * See sect. 3.4/pg. 9

 According to the underlying QTI specification, an assessmentSection can also be empty (no

items or sub-sections). The profile disallows this: There has to be at least one

assessmentItemRef or assessmentSection element present in the main assessmentSection.

3.4 sub assessmentSection level

Multiple <assessmentSection> elements are allowed underneath the main <assessmentSection>

level. This is called the sub <assessmentSection> level.

Attributes of the sub <assessmentSection> element:

Naam Prf? M Type Remarks

identifier Yes 1 string

required Yes ? boolean Meaning: When doing a random pre-selection
(sect. 4/pg. 11), this section must always be

selected.

fixed No Defining a fixed position for some components of
a test is not allowed. This is consistent with the

choices made for randomizations inside items.

title Yes 1 string

visible Yes 1 boolean Is the fact that there is a section visible to the

learner?

- true: The rendering engine is allowed to

show the existence of the section to the

learner, for instance in some kind of hierar-

chical overview.

- false: The rendering engine is not allowed

to show the existence of the section to the

learner. All content in this section must be

shown as part of the surrounding section.

keepTogether Yes ? boolean - true (default): The content of this section

must be kept together.

- false (applicable only for

visible=”false”): The content in this sec-

tion can be mingled with the content of the

surrounding section

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 10 / 17

Sub-elements of the sub <assessmentSection> element:

Naam Prf? M Remarks

preCondition No

branchRule No

itemSessionControl No

timeLimits No

selection Yes ? See sect. 4.1/pg. 11

ordering Yes ? See sect. 4.2/pg. 11

rubricBlock Yes *

assessmentItemRef Lim + The QTI specification allows empty <assementSection>’s. This

profile however excludes empty sections. See sect. 3.5/pg. 10

assessmentSection No Deeper levels of <assessmentSection>’s is not allowed.

 The QTI specification allows empty <assessmentSection>’s. This profile disallows this: An

<assessmentSection> must always contain at least one <assessmentItemRef>.

3.5 assessmentItemRef level

The assessmentItemRef level contains the link to the actual item. An item is a separate XML

document as described in [NLQTI-ITEM].

Attributes of the sub <assessmentItemRef> element:

Naam Prf? M Type Remarks

identifier Yes 1 string

required Yes ? boolean Meaning: When doing a random pre-selection
(sect. 4/pg. 11), this item must always be se-

lected.

fixed No Defining a fixed position for some components of
a test is not allowed. This is consistent with the

choices made for randomizations inside items.

href Yes 1 uri Reference to the item. References are defined in

[NLQTI-ICS], sect. 4.4

category No

Sub-elements of the sub <assessmentItemRef> element:

Naam Prf? M Remarks

preCondition No

branchRule No

itemSessionControl Yes ? See sect. 6.2/pg. 17

timeLimits Yes ? See sect. 6.1/pg. 17

variableMapping No

weight Lim 1 See sect. 3.5.1/pg. 10

templateDefault No

3.5.1 Weight of an item

 To allow computation of a more balanced total score for a test, items can be assigned a
―weight‖. For instance, the score for question A is twice as important as the score for ques-

tion B. The <assessmentItemRef> element has a <weight> sub element for this.

 This profile allows the assignment of a single weight to an item only. This weight is always

called WEIGHT.

 The specification of the <weight> element probably contains a bug: <weight> has a manda-

tory attribute called value of data type xs:double. However, it’s also mandatory to add a

value to the <weight> element of type xs:double. Both could be interpreted as the weight of

the item…
To circumvent this ambiguity (and until the QTI specification specifies what to do about this),
this profile dictates that both options (attribute and element value) must be used and that
both values must be the same. For instance:

<weight identifier="WEIGHT" value="2">2</weight>

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 11 / 17

4 Dynamic tests

The QTI specification allows dynamic tests. That is, before the test is shown to the learner, a
selection of the content is taken and randomization is applied. The guiding elements for this are

<ordering> and <selection>, both sub-elements of <assessmenbtSection>.

4.1 <selection> element

An <assessmentSection> is allowed to have an optional <selection> element to define how

many components of the <assessmentSection> will be part of the final test. A component can be

an <assessmentSection> or <assessmentItemRef>.

Attributes of the <selection> element:

Naam Prf? M Type Remarks

select Lim 1 integer This defines the number of components

(<assessmentSection> or

<assessmentItemRef>) in the final test. It must

(of course) be less than the number of compo-

nents available.

withReplacement No Using an item twice (or more) is not a functional

requirement.

 An <assessmentSection> or <assessmentItemRef> must always be part of the final test if the

attribute required=”true” is set.

 QTI allows additional attributes and elements on a <selection> element to cater for more

complex selection algorithms. This profile disallows this.

4.2 <ordering> element

An <assessmentSection> is allowed to have an optional <ordering> element to define the ran-

domization of the content.

Attributes of the <ordering> element:

Naam Prf? M Type Remarks

shuffle Yes 1 boolean

 QTI allows additional attributes and elements on an <ordering> element to cater for more

complex selection algorithms. This profile disallows this.

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 12 / 17

5 Response en feedback processing

This profile limits the response and feedback processing for tests to:

 Computing a weighted total score

 Guiding the feedback (for the test as whole, not for parts)

5.1 Functional description

5.1.1 Score

This profiles defines the score for a test as:

 The score of an item is always a floating point number in between 0.0 (wrong/bad) and 1.0

(correct/very good).

 The score for a test is computed from the weighted scores of the individual items

 Passing the score to the environment is done using an <outcomeDeclaration> with the fixed

name SCORE (sect. 5.2.1.2/pg. 13).

5.1.2 Feedback

This profile limits feedback to the learner to no feedback or feedback based only on whether the
answer is correct or incorrect. The feedback can only appear at the end of the test, not during the
test. It is not allowed to add feedback based on more complex criteria like for instance the num-
ber of times the learner tried to answer or the time passed.

Most important reasons for these limitation:

 This profile limits itself to testing (in contrast to exercising). Feedback plays a much less

prominent role in testing then it does in exercising.

 Allowing more complex feedback would have caused a disproportional increase in complexity

of the profile (causing more complex implementations of authoring systems, rendering en-
gines, etc.). Allowing QTI tests to change their behavior based on criteria like the number of
tries or the time passed would mean allowing complex and non-standard

<responseProcessing>, something we’re trying to avoid in this profile.

So this profile limits feedback for tests to:

 No feedback: There are no feedback elements in the test

 Singular feedback:

 There is feedback present for ―failed‖

 There is optional feedback present for ―passed‖

 More detailed feedback, based on other criteria or based on the actual answers given, is not

allowed.

 Feedback is allowed at the end of the test only.

5.2 Technical implementation

The definition of response and feedback processing is scattered over a number of different sec-
tions/elements within an item:

 The <outcomeDeclaration> declarations

 The <outcomeProcessing> section

 The <testFeedback> definitions

5.2.1 Elements: <outcomeDeclaration>

5.2.1.1 General

 An <outcomeDeclaration> is an internal variable in a QTI test. For instance:

<outcomeDeclaration identifier="SCORE" cardinality="single" baseType="float"

 normalMinimum=”0.0” normalMaximum=1.0”/>

 Different <outcomeDeclaration>’s than defined in the profile are not allowed.

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 13 / 17

 Attributes of <outcomeDeclaration>:

Name Prf? M Type Remarks

identifier Lim 1 identifier Three possible values: ―SCORE”, ―FEEDBACK”,

―FEEDBACK_THRESHOLD”

cardinality Lim 1 cardinality Always ―single”

baseType Lim 1 type For ―SCORE”, ―FEEDBACK_THRESHOLD”: “float”

For ―FEEDBACK”: “identifier”

view Lim ? view Don’t use or use the fixed value “candidate”

interpretation Yes ? string

longInterpretation No

normalMaximum Lim ? float For SCORE always “1.0”

Others: Don’t use

normalMinimum Lim ? float For SCORE always “0.0”

Others: Don’t use

masteryValue No

 Child elements of <outcomeDeclaration>:

Name Prf? M Remarks

defaultValue Lim ? Only when specified below

matchTable No

interpolationTable No

5.2.1.2 Score

 A test must always define an <outcomeDeclaration> called SCORE of type float.

 The attributes normalMimnimum and normalMaximum must always be present (necessary for

the correct processing of scores on optional higher levels)

 So the declaration will always be:

<outcomeDeclaration identifier="SCORE" cardinality="single" baseType="float"

 normalMinimum=”0.0” normalMaximum=1.0”/>

 Because it’s a numeric variable, its default value is zero. In contrast to what happens in some

of the QTI examples, you do not have to set this explicitly.

 The value of the SCORE <outcomeDeclaration> is always in between 0.0 (wrong/incorrect)

and 1.0 (very good/correct).

 A test for which all items have no score (for instance a test composed of all

<extendedTextInteraction> items, always yields the score 1.0

 A test for which all weights are 0.0, always yields the score 1.0.

 It’s the task of the response processing to give the SCORE <outcomeDeclaration> the right

value.

5.2.1.3 Feedback

 In case of feedback, there must be an <outcomeDeclaration> with the fixed name FEEDBACK

of type identifier:

<outcomeDeclaration identifier="FEEDBACK" cardinality="single" baseType="identifier"/>

 The FEEDBACK <outcomeDeclaration> must take one of the following three values only:

Value Meaning

(null) No answer given (yet)

RESULT_OK Test passed

RESULT_NOTOK Test failed

 Determining whether a test is passed or failed is done using the FEEDBACK_THRESHOLD

<outcomeDeclaration> (see sect. /pg. 13)

 It’s the task of the response processing to give the FEEDBACK <outcomeDeclaration> the

right value.

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 14 / 17

5.2.1.4 Feedback threshold

 In case of feedback, the response processing must, to display the right feedback, know when

to consider the test passed or failed. This is done by defining a special <outcomeDeclaration>

with the name FEEDBACK_THRESHOLD:

<outcomeDeclaration identifier="FEEDBACK_THRESHOLD" cardinality="single"

 baseType="float">

 <defaultValue>

 <value>0.75</value>

 </defaultValue>

</outcomeDeclaration>

 The FEEDBACK_THRESHOLD <outcomeDeclaration> is always of type float and always has a

default value in between 0.0 and 1.0.

 It is used by the response processing as follows:

 If the final test score is greater or equal to the defined threshold value, the test is consid-

ered passed and the FEEDBACK <outcomeDeclaration> is set to RESULT_OK.

 If the final test score is less than the defined threshold value, the test is considered failed

and the FEEDBACK <outcomeDeclaration> is set to RESULT_NOTOK.

5.2.2 Element: <outcomeProcessing>

5.2.2.1 General

 The <outcomeProcessing> section is responsible for determining the end score and the corre-

sponding feedback.

 This profile dictates that the <outcomeDeclaration> must set the values of the following

variables:

 <outcomeDeclaration> SCORE must be set to the final score for this test

 In case of feedback, the FEEDBACK <outcomeDeclaration> must be set to one of the val-

ues defined in sect. 5.2.1.3/pg. 13.

 This profile limits response processing in such a way that engines can implement it without
implementing the QTI ―programming language‖.

 For QTI items (see [NLQTI-ITEM]), this was implemented using predefined templates.
Unfortunately, QTI does not allow this for tests.

 To still allow more simple rendering engines and to stay within the QTI specifications, imple-
mentation is defined as follows:

 outcomeProcessing is always done using a simple standard algorithm. A rendering engine

is allowed to hard code this. In other words: A rendering engine does not have to interpret

the code inside the <outcomeProcessing> element (but is of course allowed to do so).

 Correct QTI code for the outcomeProcessing must always be part of the test. This profile

defines exactly how this should look like.

 The result of all this is a <outcomeProcessing> element with one (just score) or two (score

and feedback) <outcomeCondition> elements:

<outcomeProcessing>

 <outcomeCondition>

 <!-- Fixed section for computing the score. See sect. 5.2.2.2/pg. 15 -->

 </outcomeCondition>

 <outcomeCondition>

 <!-- Optional section for taking care of the feedback.

 See sect. 5.2.2.3/pg. 16 -->

 </outcomeCondition>

</outcomeProcessing>

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 15 / 17

5.2.2.2 outcomeProcessing for computing the score

 For computing the score, the following code fragment must always be present in the

<outcomeProcessing>:

<outcomeProcessing>

 <outcomeCondition>

 <outcomeIf>

 <or>

 <isNull>

 <outcomeMaximum outcomeIdentifier="SCORE" weightIdentifier="WEIGHT"/>

 </isNull>

 <equal toleranceMode="exact">

 <sum>

 <outcomeMaximum outcomeIdentifier="SCORE" weightIdentifier="WEIGHT"/>

 </sum>

 <baseValue baseType="float">0.0</baseValue>

 </equal>

 </or>

 <setOutcomeValue identifier="SCORE">

 <baseValue baseType="float">1.0</baseValue>

 </setOutcomeValue>

 </outcomeIf>

 <outcomeElse>

 <setOutcomeValue identifier="SCORE">

 <divide>

 <sum>

 <testVariables variableIdentifier="SCORE" weightIdentifier="WEIGHT"/>

 </sum>

 <sum>

 <outcomeMaximum outcomeIdentifier="SCORE" weightIdentifier="WEIGHT"/>

 </sum>

 </divide>

 </setOutcomeValue>

 </outcomeElse>

 </outcomeCondition>

</outcomeProcessing>

 Rendering engines are allowed to hard code the score computation. The following algorithm

must be used:

 If all items have no score or all weights are 0.0, the end score is 1.0

 For all other cases:

 Add up all (scores of the individual items, multiplied with their weight)

 Divide by the sum of all weights

 Definition of the weight for items is handled in sect. 3.5.1/pg. 10

 For dynamic test (sect. 4/pg. 11): The QTI documentation is a bit vague about this, but we
assume here that calculations are done only for those items actually presented to the learner.

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 16 / 17

5.2.2.3 outcomeProcessing for feedback

 A test is assumed to have feedback if <testFeedback> elements are present.

 Which feedback to show is guided by the outcomeDeclaration FEEDBACK (see

sect. 5.2.1.3/pg. 13)

 In case of feedback, the following code fragment must always be present in the

<outcomeProcessing>:

<outcomeProcessing>

 <outcomeCondition>

 <!-- Scoring. See sect. 5.2.2.2/pg. 15 -->

 </outcomeCondition>

 <outcomeCondition>

 <outcomeIf>

 <gte>

 <variable identifier="SCORE"/>

 <variable identifier="FEEDBACK_TRESHOLD"/>

 </gte>

 <setOutcomeValue identifier="FEEDBACK">

 <baseValue baseType="identifier">RESULT_OK</baseValue>

 </setOutcomeValue>

 </outcomeIf>

 <outcomeElse>

 <setOutcomeValue identifier="FEEDBACK">

 <baseValue baseType="identifier">RESULT_NOTOK</baseValue>

 </setOutcomeValue>

 </outcomeElse>

 </outcomeCondition>

</outcomeProcessing>

5.2.3 Elements: <testFeedback>

 A test without feedback is not allowed to contain <testFeedback> elements.

 For a test with feedback, <testFeedback> elements must be present:

 <!-- testFeedback for RESULT_OK is optional -->

 <testFeedback outcomeIdentifier="FEEDBACK" identifier="RESULT_OK"

 showHide="show"> … </testFeedback>

 <testFeedback outcomeIdentifier="FEEDBACK" identifier="RESULT_NOTOK"

 showHide="show"> … </testFeedback>

 Attributes of <testFeedback>:

Naam Prf? M Type Remarks

access Lim 1 string Fixed value: “atEnd”

outcomeIdentifier Lim 1 identifier Fixed value: “FEEDBACK”

showHide Lim 1 string Fixed value: “show”

identifier Lim 1 identifier Limited to:

“RESULT_OK”

“RESULT_NOTOK”

title No

NLQTI: Dutch Profile for Question and Test Interoperability ● Tests

Version V1.0 ● November 2012

 17 / 17

6 Additional elements

6.1 <timeLimits> element

The element <timeLimits> limits the time a learner is allowed to take for a (section of the) test.

This profile limits setting time limits to the full test (element <assessmentTest>) or to the indi-

vidual items (element <assessmentItemRef>). Time is expressed in seconds.

Attributes of the <timeLimits> element:

Name Prf? M Type Remarks

minTime Yes ? integer The minimum number of seconds a learner must

take for this test/item.

Applicable only if the test is defined as linear

(see testPart’s sect. 3.2/pg. 8, attribute

navigationMode)

maxTime Yes ? integer The maximum number of seconds a learner can

take for this test/item.

6.2 <itemSessionControl> element

The <itemSessionControl> element defines properties for a single item inside a test. This profile

limits setting these properties to the full test (element <assessmentTest>) or to the individual

items (element <assessmentItemRef>).

Attributes of the <itemSessionControl> element:

Name Prf? M Type Remarks

maxAttempts Yes ? integer The allowed number of attempts to answer the

item. For no limit specify 0. Default is 1.

This attribute is applicable only for non-adaptive

items. Since this profile does not allow adaptive

items only, it’s always applicable.

showFeedback Yes ? boolean Whether or not feedback must be shown (at all).

Warning: Default value is false, meaning no

feedback will ever be shown if you don’t explicitly

set it to true. It therefore makes sense to set

this to true on the highest level (testPart).

allowReview Yes ? boolean Whether or not a review of the answers is al-
lowed after all attempts (defined using the

maxAttempts attribute) are exceeded. Default is

true.

showSolution Yes ? boolean Whether or not learner is allowed to see the

answer/solution to the item. Default is false.

allowComment Yes ? boolean Whether or not the learner is allowed toad com-

ments to items. QTI does not define a default.

This profile assumes a default of false.

allowSkipping Yes ? boolean Whether or not items can be skipped (meaning
there can be questions without a score). Default

is true.

validateResponses Yes ? boolean Whether or not invalid responses to items are
accepted (e.g. text where a number is ex-

pected). QTI does not define a default. This

profile assumes a default of true.

Applicable only in a testPart for which

submissionMode=”individual”, see

sect. 3.2/pg. 8.

