

Edukoppeling

Asynchrone M2M gegevensuitwisseling binnen het

onderwijs
Werkdocument Asynchrone communicatie via RESTful API’s

Edustandaard

Datum: 11 februari 2026

Status: concept

Edukoppeling – Asynchrone communicatie via RESTful API’s 2-25

Inhoudsopgave

1. Inleiding 4

1.1. Doel en doelgroep 4

1.2. Doel van Edukoppeling 4

1.3. Positionering van Edukoppeling in het Edustandaard vijflagen model 4

1.4. Uitgangspunten voor de Edukoppeling-standaard 5

1.5. Aanleiding 6

1.5.1. Ontwikkelingen 6

1.5.2. Advies 6

2. Profiel 8

2.1. Edukoppeling-aanbod: Notificaties / Signalen 8

2.2. CloudEvents 8

2.2.1. Rollen 9

2.2.2. Interacties 9

2.3. Event levering semantiek 10

2.3.1. Aflevergaranties 10

2.3.2. Consumer garanties 11

2.3.3. End-to-end exactly-once verwerking in een EDA 11

2.3.4. Trade-offs 12

2.4. Uitgangspunten voor het profiel 12

2.5. Registratie 13

2.6. Producer 13

2.7. Intermediary 14

2.8. Consumer 14

2.9. Technische contracten 14

2.9.1. Contract register 15

2.10. CloudEvent beveiligingsopties 16

3. Bijlage A: Uitdagingen in een gedistribueerd landschap 17

3.1. Traditionele uitdagingen in een gedistribueerd IT-landschap 17

3.2. Traditioneel gebruikte patronen in een gedistribueerd IT-landschap 17

3.2.1. Patroon: Two-phase commit (2PC) 17

3.2.2. Patroon: Saga-patrron 18

3.2.3. Patroon: Transactioneel outbox-patroon 18

4. Bijlage B: Richtlijnen voor idempotentie 19

4.1. Wanneer implementeren 19

4.2. Algemene richtlijnen 19

Edukoppeling – Asynchrone communicatie via RESTful API’s 3-25

4.2.1. Response 19

4.3. Technische implementatierichtlijnen: Idempotentie 20

4.3.1. Idempotentieconventies 20

4.3.2. Uniekheid idempotentie sleutel 20

4.3.3. Geldigheid en verloop van idempotentie sleutel 20

4.3.4. Idempotentie fingerprint 20

4.3.5. Verantwoordelijkheden client 21

4.3.6. Verantwoordelijkheden resource 21

4.3.7. Foutafhandeling 21

4.3.8. Client side implementatie (voorbeeld) 21

4.3.9. Resource implementatie (voorbeeld) 22

5. Bijlage C: Begrippen 23

6. Bijlage D: Referenties 25

Edukoppeling – Asynchrone communicatie via RESTful API’s 4-25

1. Inleiding

1.1. Doel en doelgroep

Dit werkdocument ondersteunt de ontwikkeling van een nieuwe versie van Edukoppeling.

Het bevat voorschriften om asynchrone M2M communicatie via RESTful API’s (hierna

Edukoppeling-profiel) te bewerkstelligen. Dit document is bedoeld voor de leden van de

Edukoppeling werkgroep. Hen wordt gevraagd om dit document te reviewen en aan te

passen waar nodig.

1.2. Doel van Edukoppeling

Edukoppeling schrijft voor hoe onderwijsorganisaties, publieke uitvoeringsorganisaties,

leveranciers en andere ketenpartners gegevensuitwisselingen opzetten. De standaard gaat

over de afhandeling van berichten (het transport) en niet over de inhoud van berichten. Het is

een functioneel technische standaard, maar zal ook aansluiting moeten vinden op kaders

van andere architectuurlagen. Hoe Edukoppeling aansluit op bredere afspraken is aan

ketensamenwerkingen1 waarin de standaard als onderdeel van de afspraak of het

afsprakenstelsel wordt gevat.

Edukoppeling regelt de volgende ketenfuncties: identificatie, authenticatie, autorisatie en

routering, op de ‘uitwisselingslaag’. Dit om de zorgen dat vertrouwelijke gegevens tijdens

transport van de ene naar de andere organisatie, niet ongeoorloofd worden ingezien of

gemanipuleerd.

Edukoppeling heeft als scope alle werkingsgebieden vallend onder alle onderwijssectoren en

moet hiermee ook tegemoetkomen aan de diversiteit in processen en technische inrichting

van deze onderwijssectoren en ketens. Er wordt wel gestreefd naar uniformiteit, omdat er

tussen ketens vanuit diverse werkingsgebieden steeds meer sprake kan zijn van

gegevensuitwisseling, maar er moet ook voldoende flexibiliteit geboden worden om daar

waar nodig andere keuzes te kunnen maken.

1.3. Positionering van Edukoppeling in het Edustandaard vijflagen model

Het Edustandaard 5-lagen model2 onderkent de volgende lagen:

• grondslagenlaag: borgt de juridische basis en beleidskaders waarbinnen

gegevensuitwisseling is toegestaan;

• organisatorische laag: ketensamenwerking afspraken over wie welke rol heeft, welke

gegevensdiensten, interfaces en interactiepatronen er zijn en welke gegevens onder

welke condities uitgewisseld worden;

• informatielaag: semantiek, waaronder gegevensdefinities, informatiemodellen en de

gebruikte identifiers voor rechtspersonen en natuurlijke personen;

1 Ketensamenwerkingen zijn bijvoorbeeld OKE, Edu-V, ROD ec. (zie ook: https://rosa-
begrippenkader.wikixl.nl/index.php/Begrip:27a6accf-472d-4415-bc5b-1e9de17bf288#tab=Betekenis)
2 AMIGO-methodiek-1.1.0-1.pdf en
https://rosa.wikixl.nl/index.php/Interoperabiliteit_en_het_Edustandaard_lagenmodel#Opbouw_van_het_lagenmod
el

https://rosa-begrippenkader.wikixl.nl/index.php/Begrip:27a6accf-472d-4415-bc5b-1e9de17bf288#tab=Betekenis
https://rosa-begrippenkader.wikixl.nl/index.php/Begrip:27a6accf-472d-4415-bc5b-1e9de17bf288#tab=Betekenis
https://www.edustandaard.nl/app/uploads/2025/10/AMIGO-methodiek-1.1.0-1.pdf
https://rosa.wikixl.nl/index.php/Interoperabiliteit_en_het_Edustandaard_lagenmodel#Opbouw_van_het_lagenmodel
https://rosa.wikixl.nl/index.php/Interoperabiliteit_en_het_Edustandaard_lagenmodel#Opbouw_van_het_lagenmodel

Edukoppeling – Asynchrone communicatie via RESTful API’s 5-25

• applicatielaag: API’s en hun beveiligingsprofielen, berichtspecificaties, payload

beveiliging, interactiepatronen en foutafhandeling;

• IT-infrastructuurlaag: transportprotocollen en technische beveiligingsmechanismen

zoals TLS.

Het Edukoppeling-profiel heeft binnen het Edustandaard 5 lagen model met name betrekking

op de applicatielaag, levert daarmee een belangrijke ondersteuning aan met name laag 2 en

heeft een relatie met de IT-infrastructuurlaag.

1.4. Uitgangspunten voor de Edukoppeling-standaard

1. Het organisatorisch werkingsgebied: onderwijs3 waaronder alle door de overheid

erkende onderwijsorganisaties die binnen de sectoren po, vo, mbo/bve en ho vallen

en hun dienstverleners.

2. Het functioneel toepassingsgebied: geautomatiseerde uitwisseling van vertrouwelijke

gegevens (gesloten data) tussen informatiesystemen van onderwijsorganisaties en

ketenpartners (onderling, met bedrijven of met de overheid). Deze uitwisseling betreft

M2M point-to-point verbinding voor uitwisseling tussen een confidential client en een

gesloten API waarbij de toegang is geregeld met OAuth.

a. De client kan zowel een computersysteem van een onderwijsorganisatie als

van een dienstverlener zijn.

b. Of en hoe mandatering is ingericht valt buiten de scope van deze versie. Wel

wordt aangenomen dat de Authorization Server een rol heeft bij

mandaatverificatie. Daar waar mandaten van toepassing zijn, wordt er geen

access token uitgegeven als er geen valide mandaat bestaat.

3. Edukoppeling is gebaseerd op internationale open standaarden en

onderwijsstandaarden geregistreerd bij Edustandaard.

4. Er wordt als mogelijk een volwassen industry standard gekozen. Dit om te voorkomen

dat nieuwe/kleine partijen te maken krijgen met (te) grote integratiedrempels.

5. Edukoppeling-profielen zijn op zichzelf staande documenten. We verwijzen naar

internationale open standaarden en onderwijsstandaarden (bijvoorbeeld UBV TLS4).

6. Als we gebruik maken van (delen van) nationale standaarden (bijvoorbeeld NL GOV

of Digikoppeling) dan worden relevante aspecten overgenomen met bronvermelding.

7. De standaard volgt ontwikkelingen en wordt onder Edustandaard beheer

doorontwikkeld.

8. Afhankelijk van de karakteristieken van een ketensamenwerking kan het nodig zijn

om meerdere varianten/keuzes binnen het profiel te ondersteunen.

9. Edukoppeling-profielen gaan niet over de inhoud van de uitwisseling en ook niet over

het design van API’s.

3 https://rosa.wikixl.nl/index.php/Werkingsgebieden
4 https://www.edustandaard.nl/standaard_afspraken/uniforme-beveiligingsvoorschriften/

https://rosa.wikixl.nl/index.php/Werkingsgebieden
https://www.edustandaard.nl/standaard_afspraken/uniforme-beveiligingsvoorschriften/

Edukoppeling – Asynchrone communicatie via RESTful API’s 6-25

1.5. Aanleiding

Binnen het Groeifondsprogramma Npuls werken Studielink, SURF en MBO Digitaal samen

aan het onderbrengen van het huidige Studielink / Cambo in één nieuwe centrale

voorziening voor het Aanmelden, Inschrijven en Intekenen (ook wel project AII). Als

onderdeel van dit project worden ook de koppelvlakken met sectorpartners

(onderwijsinstellingen, DUO, etc.) opnieuw onder de loep genomen, zodat daar voor het

onderwijs een oplossing wordt neergezet conform de modernste standaarden en die past bij

de strategie van de Nederlandse overheid en het daarbinnen vallende onderwijs (i.e. semi-

overheid).

Vernieuwing van koppelvlakken vereist afstemming en dit wordt vanuit Edustandaard

gefaciliteerd. Deze notitie biedt richting aan het toekomstige koppelvlak op het gebied van

asynchrone machine-to-machine (M2M) integraties.

1.5.1. Ontwikkelingen

In deze paragraaf worden relevante ontwikkelingen binnen de overheid en IT beschreven die

inspiratie bieden voor ontwikkeling binnen het onderwijs.

• Digikoppeling (ondersteunen door Logius) voor overheidsorganisaties vernieuwd

regelmatig. Zo geldt ook dat Digikoppeling Architectuur 2.1.1 (januari 2025) 5 een

uitgebreider aanbod heeft voor uitwisselingen; specifieke te benoemen: 4.4.4.

Notificaties en Signalen.

• patroon voor gegevens uitwisseling binnen Event Driven Architecturen. Dit is één

van de nieuwe patronen binnen de Digikoppeling Architectuur 2.1.1 en is daarbij een

mogelijk bruikbaar patroon in de toolbox van een architect. Dit verwijst o.a. naar een

JSON Event Format 6 voor CloudEvents en Web Hooks 7 voor Event Delivery. Een

definitieve versie 1.0 8 is momenteel al beschikbaar en definitieve concept versie 1.1 9

ligt nu nog ter voorstel voor.

• AsyncAPI specificatie initiatief voor het beschrijven van event-driven APIs 10

• Een voorgestelde IETF-standaard, om idempotency 11 te implementeren voor HTTP

methoden die niet als veilig worden gezien, die toegevoegde waarde heeft voor

robuuste end-to-end Event Driven Architecturen.

1.5.2. Advies

Het Edukoppeling-profiel kent momenteel al een transactiepatroon voor asynchrone melding-

bevestiging. Dit transactiepatroon maakt gebruik van REST-APIs, vaak gespecificeerd via

een OpenAPI-specificatie 12, i.e. hoe ook het synchrone bevragingen/meldingen patroon

wordt vormgegeven.

Dit maakt de koppeling tussen aflevering van het bericht en inhoud nauw aan elkaar

verknoopt. Het gebruik van CloudEvents (zoals beschreven in 2.2) zorgt juist voor

5 https://gitdocumentatie.logius.nl/publicatie/dk/architectuur/2.1.1/
6 https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
7 https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md
8 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/
9 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
10 https://www.asyncapi.com/en
11 https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/
12 https://www.forumstandaardisatie.nl/open-standaarden/openapi-specification

https://gitdocumentatie.logius.nl/publicatie/dk/architectuur/2.1.1/
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
https://www.asyncapi.com/en
https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/
https://www.forumstandaardisatie.nl/open-standaarden/openapi-specification

Edukoppeling – Asynchrone communicatie via RESTful API’s 7-25

ontkoppeling van aflevering en inhoud. Voor asynchrone communicatie is daarom de

voorkeur om deze vorm van uitwisseling uit het aanbod te gaan gebruiken.

Dit geldt niet alleen voor simpele notificaties en signalen (zoals de Digikoppeling standaard

voorschrijft), maar aanvullend ook voor het bereiken van losgekoppelde

gegevensuitwisselingen.

Edukoppeling – Asynchrone communicatie via RESTful API’s 8-25

2. Profiel

2.1. Edukoppeling-aanbod: Notificaties / Signalen

Asynchrone communicatie via RESTful API is een uitbreiding op het Edukoppeling-profiel en

biedt aanvullend aanbod voor uitwisseling van gegevens. Door toevoeging van dit patroon in

de gegevensuitwisseling wordt een zogenaamde Event Driven Architecture (EDA)

gerealiseerd.

Een Event Driven Architecture (EDA) biedt een aantal voordelen ten opzichte van meer

synchrone architecturen, zoals een Service Oriented Architectuur (SOA). Dit biedt

verschillende voordelen ten opzichte van transactiepatronen die nu worden gebruikt:

A. Ontkoppeling van systemen: Deze architectuur is van nature losjes gekoppeld, omdat

applicaties met elkaar communiceren via gebeurtenissen (en een tussenlaag – ook

wel Intermediary). Dat maakt het eenvoudiger om applicaties onafhankelijk van elkaar

te ontwikkelen, testen en implementeren.

B. Asynchrone communicatie: In een EDA hoeven aanvragen niet op elkaar te wachten.

C. Schaalbaarheid en gemak van het toevoegen van nieuwe consumenten: EDA maakt

het gemakkelijk om nieuwe applicaties of diensten te implementeren en te integreren

zonder de bestaande te beïnvloeden.

D. Hoge doorvoer en low latency: Een EDA kan een groot aantal events met een lage

latency verwerken.

Dit patroon is niet alleen bruikbaar voor simpele notificaties en signalen (zoals de

Digikoppeling standaard voorschrijft), maar aanvullend ook voor het bereiken van

losgekoppelde gegevensuitwisselingen.

2.2. CloudEvents

Dit hoofdstuk beschrijft de aanvullende voorschriften op de CloudEvents standaard die de

basis vormt voor asynchrone communicatie binnen het Edukoppeling-profiel. Het

Edukoppeling-profiel biedt op een aantal punten keuzemogelijkheden. Hiermee beogen we

een profiel dat een verplichte basisset van voorschriften bevat, maar ook genoeg ruimte

biedt voor passende configuraties om voor ketenpartners binnen een bepaalde

ketensamenwerking niet onoverkomelijke drempels op te werpen. Het is aan een

ketensamenwerking om te bepalen welke opties van toepassing zijn.

Dit profiel moet worden toegepast wanneer er binnen een ketensamenwerking asynchrone

gegevensuitwisseling plaatsvindt tussen confidential clients en RESTful API's. De

CloudEvents standaard is gebaseerd op het principe van het niet opleggen van meer eisen

op de betrokken partijen dan noodzakelijk.

Het onderwijsveld bestaat uit verschillende ketenpartners die ieder verantwoordelijk zijn voor

een deel van de keten en zijn systemen. De CloudEvents standaard moet daarom in de

context van deze ketensamenwerking worden geplaatst.

De rollen en interacties worden hieronder verder toegelicht.

Edukoppeling – Asynchrone communicatie via RESTful API’s 9-25

2.2.1. Rollen

Het basispatroon beschrijft een applicatie in de rol van ‘producer’ die ‘events’ publiceert:

dataregistraties die een gebeurtenis en de bijbehorende context vastleggen. Gepubliceerde

events kunnen worden geconsumeerd door applicaties in de rol van ‘consumer’. Consumers

abonneren zich op bepaalde type events. Er kunnen één of meerdere applicaties in de rol

van ‘intermediary’ zijn die zorgdragen voor het routeren van events naar consumers op basis

van contextuele informatie. Dit is vergelijkbaar met het publish-subscribe-patroon:

Figuur 1 - Publish-subscribe patroon

In dit patroon is het duidelijk dat de producer wordt beheerd door de ketenpartner die

berichten produceert en de consumer wordt beheerd door de ketenpartner die de berichten

consumeert, en asynchroon verwerkt. Voor de Intermediary is dit niet direct duidelijk en is er

momenteel ook binnen de (semi-)overheid geen één centrale partij toe te wijzen die

logischerwijs dit beheer op zich kan nemen. We kiezen hiervoor om binnen de CloudEvents

patronen per ketenpartner een Intermediary te implementeren. Dit zorgt ervoor dat elke

dienstverlener deze Intermediary naar eigen inzicht kan inrichten en beheren:

Figuur 2 - Intermediary per ketenpartner

Deze aanpassing aan het patroon betekent dat elke partij een API-endpoint definieert waar

CloudEvents naar verstuurd kunnen worden.

De rollen worden respectievelijk in paragrafen 2.5, 2.7 en 2.8 nader toegelicht.

2.2.2. Interacties

Deze componenten hebben de volgende interacties:

• Berichtenverkeer partij A naar partij B:

o De producer van partij A produceert events naar de Intermediary van partij B.

o De Intermediary B persisteert het event zodanig dat consumer partij B deze

kan consumeren óf stuurt het event direct door naar consumer partij B.

o Consumer partij B verkrijgt het event van Intermediary B gerouteerd/gepushed

óf consumeert de events van Intermediary B.

• Berichtenverkeer partij B naar partij A:

o De producer van partij B produceert events naar de Intermediary van partij A.

Producer Intermediary Consumer

Producer

Ketenpartner A

Intermediary

Ketenpartner B

Consumer

Ketenpartner B

Consumer

Ketenpartner A

Intermediary

Ketenpartner A

Producer

Ketenpartner B

Edukoppeling – Asynchrone communicatie via RESTful API’s 10-25

o De Intermediary A persisteert het event zodanig dat consumer partij A deze

kan consumeren óf stuurt het event direct door naar consumer partij A.

o Consumer partij A verkrijgt het event van Intermediary A gerouteerd/gepushed

óf consumeert de events van Intermediary A.

De componenten en interacties worden weergegeven in Figuur 3 - CloudEvents uitwisseling.

Figuur 3 - CloudEvents uitwisseling

2.3. Event levering semantiek

In een gedistribueerd landschap heb je traditioneel te maken met de uitdaging van

atomiciteit. Dit geldt ook voor het event-uitwisseling.

2.3.1. Aflevergaranties

Als het gaat om aflevergaranties richting een Intermediary zijn er drie opties:

• At most once: een bericht kan worden afgeleverd, maar nooit meer dan één keer. Dit

kan leiden tot verlies van berichten en wordt daarom zelden, zo niet nooit, gebruikt.

• At least once: een bericht wordt afgeleverd, maar kan meer dan één keer worden

afgeleverd. Dit kan leiden tot dubbele berichten.

• Exactly once: een bericht wordt precies één keer afgeleverd.

Edukoppeling – Asynchrone communicatie via RESTful API’s 11-25

De reikwijdte van deze garanties ligt echter alleen binnen de event-broker en niet daarbuiten,

zoals in een gedistribueerd IT-landschap. In een volledig robuust IT-landschap moeten we

rekening houden met end-to-end robuuste aflevering en uitgaan van het worstcasescenario.

Een worstcasescenario is wanneer een producer crasht / herstart / stopt tijdens de

verwerking van een event. Met name in een schaalbare infrastructuur is dit een realistisch

scenario. Afhankelijk van het exacte moment van de crash kunnen zich verschillende

situaties voordoen:

• Als de producer het event nog niet heeft geproduceerd: de producer zal het event

opnieuw proberen te leveren. Dit vormt geen probleem.

• Als de producer het event heeft geproduceerd en geen andere status hoeft bij te

houden (meestal wanneer de event-broker de enige bron van waarheid is): dit vormt

geen probleem.

• Als de producer het event heeft geproduceerd, maar het event nog niet als afgeleverd

heeft gemarkeerd: de producer zal het event opnieuw proberen te produceren, wat

leidt tot dubbele events. Zonder mitigerende maatregelen aan de consumer-zijde kan

dit tot problemen leiden.

2.3.2. Consumer garanties

Wat betreft consumer-garanties vanuit een event-broker zijn er drie opties:

• At most once: een bericht kan worden geconsumeerd, maar nooit meer dan één keer.

Dit kan leiden tot verlies van berichten en wordt daarom zelden, zo niet nooit,

gebruikt. Dit treedt typisch op wanneer een bericht als verwerkt wordt gemarkeerd

vóór de verwerking, maar de verwerking daarna faalt.

• At least once: een bericht wordt geconsumeerd, maar kan meer dan één keer worden

geconsumeerd. Dit kan leiden tot dubbele verwerking. Dit treedt typisch op wanneer

een bericht pas ná de verwerking als verwerkt wordt gemarkeerd, maar het markeren

faalt en het bericht opnieuw wordt geconsumeerd.

• Exactly once: een bericht wordt exact één keer verwerkt. Een bericht kan vaker dan

één keer worden geconsumeerd, maar de verwerking moet exact één keer

plaatsvinden. In onze gedistribueerde opzet is dit zonder aanvullende maatregelen

per definitie niet mogelijk, vanwege de uitdagingen rond atomiciteit.

2.3.3. End-to-end exactly-once verwerking in een EDA

In deze sectie bekijken we hoe echte end-to-end exactly-once verwerking kan worden

gerealiseerd binnen een Event-Driven Architecture (EDA). Daarbij zorgen we ervoor dat:

A. Een producer events at least once produceert. In normale omstandigheden

produceert een producer altijd exactly once, maar in foutscenario’s kan dit vaker

gebeuren.

B. Een consumer events at least once consumeert. In normale omstandigheden

consumeert een consumer altijd exactly once, maar in foutscenario’s kan dit vaker

gebeuren.

C. De verwerking exactly once wordt uitgevoerd door middel van idempotentie (zie

bijlage B) in de ontvangende service.

Dit zorgt voor een minimale extra impact op de performance aan de verwerkingskant en

waarborgt uiteindelijke atomiciteit zonder dataverlies of duplicatie.

Edukoppeling – Asynchrone communicatie via RESTful API’s 12-25

2.3.4. Trade-offs

We gaan uit van een moderne EDA en vergelijken traditionele patronen (zie ook bijlage A)

2PC, Saga en idempotentie:

2PC Saga Idempotentie

Schaalbaarheid --- + +++

Complexiteit -

(coördinatie)

--- (compenserende acties,

orkestratie)

+

Latency --- - +++

EDA-vriendelijk --- +++ +++

Impact op

leveranciers/keten

--- --- -

Eindscore --- +- ++

In bijlage B worden richtlijnen voor het implementeren van idempotentie beschreven.

2.4. Uitgangspunten voor het profiel

1. Dit Edukoppeling-profiel is gebaseerd op de internationale open standaarden rond

CloudEvents. Het fundament is de CloudEvents specificatie, opgesteld door Cloud

Native Computing Foundation (CNCF).

2. Dit Edukoppeling-profiel volgt de richtlijnen zoals beschreven in het NL GOV profile

for CloudEvents 13:

a. Context attributen (H3);

b. Event Data (H4);

c. Size Limits (H5);

d. Gebruik van JSON, HTTP en webhook (bijlage A) zoals ook beschreven in de

Guidelines for NL-GOV profile CloudEvents 14.

Met uitzondering van:

e. CloudEvent Security Options (H6);

f. Abuse protection as described in the guidelines 15.

In paragraaf 2.10 CloudEvent beveiligingsopties worden de beveiligingsopties binnen

dit profiel beschreven.

3. Dit Edukoppeling-profiel is alleen van toepassing in de context van confidential

clients.

4. Dit Edukoppeling-profiel volgt het OAuth client credentials profiel voor RESTful API’s

voor machine-to-machine (M2M) gegevensuitwisseling binnen het onderwijs.

13 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
14 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/1.0/
15 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/1.0/

https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/1.0/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/1.0/

Edukoppeling – Asynchrone communicatie via RESTful API’s 13-25

5. Dit Edukoppeling-profiel schrijft het gebruik van Transport Layer Security (TLS)

voor conform UBV TLS.

2.5. Registratie

De ketenpartner die verantwoordelijk is voor de producer (hierna: producer) is ervoor

verantwoordelijk dat een portaal en/of proces beschikbaar gesteld voor registratie van de

ketenpartners die verantwoordelijk is voor de consumer (hierna: consumer).

De registratie volgt een aantal stappen:

- Ketenpartners spreken het voornemen uit naar elkaar om berichtuitwisseling via

CloudEvents op te zetten.

- De consumer accepteert en registreert dat.

Bij registratie is het van belang dat de producer alleen gegevensleveringen naar consumers

mogelijk maakt die toegang mogen hebben tot de data die wordt uitgewisseld. Dit stelt de

producer zeker. De producer maakt het mogelijk via een portaal/proces om een

afleverlocatie te configureren / aan te leveren.

Bij registratie van het webhook-endpoint bij de producer, controleert de producer.

Het is de verantwoordelijkheid van de consumer om zich te registreren bij de producer voor

de berichten van gegevensleveringen die noodzakelijk zijn. De consumer levert hiervoor een

webhook-endpoint aan.

2.6. Producer

Een producer is een systeem dat voor één of meer gegevensuitwisselingen (in verschillende

ketensamenwerkingen) CloudEvents produceert en aflevert bij geregistreerde Intermediaries.

De producer houdt bij het opstellen van requests rekening met aan welke geregistreerde

partijen berichten dienen te worden aangeleverd (conform registratie) en stuurt de berichten

naar het registreerde afleverpunt (i.e. een webhook) van de Intermediary. Hierbij houdt de

producer rekening met eventuele verschillende versies die een bericht kan hebben.

Indien de producer eigenaar is van de berichtspecificatie, registreert de producer de

technische contracten bij het contract register (zie 2.9 Technische contracten).

Voor de producer gelden aanvullend de volgende richtlijnen:

• Een producer moet best-practices in event-driven architecturen ondersteunen om at-

least once produceren van events en exactly-once verwerking mogelijk te maken,

door middel van bijv. het transactioneel outbox patroon (paragraaf 2.12.3) en

idempotentie (hoofdstuk 3).

• Een producer moet rekening houden met rate-limiting van de intermediary en past

throttling toe waar nodig.

• Een producer mag CloudEvents bufferen en als batch aanleveren, indien de

ontvanger CloudEvents in batch ondersteunt.

• Een producer mag circuit breaking toepassen bij ongeplande niet-beschikbaarheid.

Edukoppeling – Asynchrone communicatie via RESTful API’s 14-25

2.7. Intermediary

De intermediary uit zich naar de buitenwereld als een beveiligd endpoint. Het endpoint

verwacht een payload in lijn met de CloudEvents standaard. Dit betreft daardoor twee

varianten:

1. Endpoint voor individuele CloudEvents berichten (verplicht)

2. Endpoint voor CloudEvents in batch (optioneel)

De intermediary registreert het technische contract van de webhook bij het contract register

(zie 2.9 Technische contracten).

De intermediary heeft een aantal taken:

a. accepteert het verzoek;

b. valideert het verzoek (minimaal de CloudEvents structuur);

c. persisteert het verzoek;

d. initieert verwerking bij de consumer (optioneel). Dit vindt plaats in geval van optie A

uit Figuur 3 - CloudEvents uitwisseling;

e. geeft een technische bevestiging dat het bericht is ontvangen. Functionele

verwerking vindt asynchroon plaats aan de kant van de consumer.

De intermediary mag rate-limiting toepassen om zijn systemen weerbaarder te maken. In het

algemeen wordt aangeraden om rate-limiting toe te passen per producer.

2.8. Consumer

De consumerende partij bepaalt hoe de ontvanger geïmplementeerd wordt. Hier kunnen

verschillende patronen gebruikt worden zoals beschreven in Figuur 3 - CloudEvents

uitwisseling:

A. De consumer wacht op berichten voor verwerking die actief door de Intermediary

aangeleverd kunnen worden (PUSH).

B. De consumer haalt de berichten actief bij de intermediary (PULL).

Een consumer moet best-practices in event-driven architecturen ondersteunen om at-least

once consumeren van events en exactly-once verwerking mogelijk te maken, door middel

van bijv. idempotentie (hoofdstuk 3), retries, DLQ en replays.

2.9. Technische contracten

Ketenpartner bepalen altijd gezamenlijk wie welke contracten opstelt. Desondanks, stellen

we belangrijk richtlijnen op die kunnen worden gehanteerd. We hanteren de volgende

richtlijnen:

- De OpenAPI-specificatie (OAS) van de webhook wordt gedefinieerd door de

ontvangende partij.

- De AsyncAPI-specificatie (AAS), i.e. de business data, wordt gedefinieerd door de

producer, omdat deze eigenaar is van data en het gedrag. Hierbij stemt de producer

de specificatie af op de eisen van de mogelijke consumers. Datacontracten hanteren

idealiter waar mogelijk sectorstandaarden voor gegevensstructuren.

Edukoppeling – Asynchrone communicatie via RESTful API’s 15-25

Zoals elke richtlijn kan daar met goede argumentatie van afgeweken worden, indien

noodzakelijk. Zo kan het wenselijk zijn dat een partij die een centrale voorziening levert

afspraken maakt over welke gegevens ontvangen kunnen worden. Daarom bepalen

ketenpartners altijd gezamenlijk definitief wie de specificatie opstelt en onderhoudt.

2.9.1. Contract-register

Contracten worden op één plek geregistreerd door de partij die de specificatie definieert; elke

ketenpartner zal zo’n contract-register aanbieden. Deze plek, een contract-register, is de

bron van waarheid voor de betreffende specificatie.

Het is mogelijk om vanuit beveiligingsoogpunt eerst de specificatie over te zetten naar het

‘eigen’ intern register. Dit is weergegeven hieronder:

Andere partijen kunnen deze specificatie dan handmatig en/of geautomatiseerd ophalen om

de andere kant van de integratie op te zetten. Automatisering kan helpen om de

berichtspecificatie op te halen uit de bron en daaruit direct, of via een intern register dat een

kopie opslaat, automatisch code te generen.

Bijvoorbeeld als volgt:

- Register partij A bevat het AsyncAPI contract.

- Partij B haalt het contract over register A naar een eigen immutable register B.

- Een pipeline draagt zorg voor het ophalen van dit contract uit het interne register,

genereren, compileren, packaging en publicatie van het artifact naar een interne

repository.

- Een automatische dependency updater kan detecteren dat er een nieuwe versie

beschikbaar is, de versie ophogen en een ontwikkelaar laten besluiten of dit direct

doorgevoerd kan worden. Belangrijk: Een consumer applicatie beslist zelf wanneer

een upgrade plaatsvindt.

Figuur 5: Voorbeeld proces over rol register en automatisering.

Register
partij A

Haal over
naar

register

partij B

Pipeline
genereert
(nieuwe)

versie

artifact.

Consumer
applicatie

besluit
overstap naar

(nieuw)
versie.

Register partij A Register partij B

Pull specificatie

Figuur 4: Interactie tussen registers partijen.

Edukoppeling – Asynchrone communicatie via RESTful API’s 16-25

2.10. CloudEvent beveiligingsopties

De beveiliging vindt plaats op twee niveaus:

- Applicatielaag: Maakt gebruik van het OAuth client credentials profiel voor RESTful

API’s.

- IT-infrastructuurlaag: Maakt gebruik van Transport Layer Security

(TLS) conform UBV TLS.

Dit Edukoppeling-profiel definieert geen aanvullende beveiligingsmechanismen. Zo geldt:

- De payload wordt niet aanvullend beveiligd. Dat is niet nodig omdat het uitgangspunt

machine-to-machine (M2M) is. Vooralsnog wordt de payload alleen

beveiligd in transport (TLS).

- Abuse protection zoals beschreven in de webhook standaard16 is niet nodig, omdat

OAuth2 al de toegang regelt tot het webhook-endpoint. Indien de consumer toegang

verleent aan de producer via OAuth2, wordt daarmee ook de producer goedgekeurd

om berichten naar de consumer te sturen.

De volgende voorschriften gelden wel voor CloudEvents:

- Context-attributen: Sensitieve informatie zou niet opgenomen moeten worden in

context-attributen aangezien producers, consumers en intermediairs deze attributen

mogen loggen.

- Domein specifieke data (data-attribuut): Domein specifieke event data wordt niet

versleuteld.

Aanvullende beveiliging afspraken worden, waar noodzakelijk, afgestemd tussen de

producers en consumers. Zo geldt:

a. Versleuteling is alleen noodzakelijk in scenario’s waar (niet vertrouwde)

tussenliggende componenten voor datalekken kunnen zorgen. Versleutelen is

rekenintensief en het maakt het bovendien moeilijker voor beveiligingsmechanismen,

zoals API-gateways, de payload te valideren en transformeren (indien nodig).

b. Ondertekening van gegevens is alleen nodig indien er een risico is dat de integriteit

van de gegevens aangetast kan worden of als onweerlegbare overdracht vereist

wordt.

16 https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/http-webhook.md

https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/http-webhook.md

Edukoppeling – Asynchrone communicatie via RESTful API’s 17-25

Bijlage A: Uitdagingen in een gedistribueerd

landschap
Een gedistribueerd IT-landschap bestaat uit meerdere systemen die met elkaar

communiceren door het uitwisselen van berichten. In die zin is er altijd sprake van een

zender en een ontvanger van een bericht. We moeten ervoor zorgen dat er geen berichten

verloren gaan of dubbel worden verwerkt. Dit zou namelijk leiden tot informatieverlies of

dubbele data.

Bijvoorbeeld: in een IT-landschap met een ordersysteem en een betaalsysteem moeten we

ervoor zorgen dat een order die in het ordersysteem wordt aangemaakt exact één keer

financieel wordt verwerkt.

Robuuste afhandeling betekent dat alle berichten (verzonden door een zender) exact één

keer door de ontvanger worden verwerkt, zonder aanvullende neveneffecten.

2.11. Traditionele uitdagingen in een gedistribueerd IT-landschap

Binnen de grenzen van één enkel systeem zorgen transacties ervoor dat óf alle wijzigingen

óf geen van de wijzigingen worden opgeslagen. Dit concept van atomiciteit zorgt ervoor dat

een transactie “alles of niets” is.

In een gedistribueerd IT-landschap is het echter, zonder aanvullende maatregelen die een

gedistribueerde transactie over systeemgrenzen heen waarborgen, niet mogelijk om twee (of

meer) systemen atomair bij te werken, omdat er in wezen sprake is van twee afzonderlijke

transacties.

Consistentie over gedistribueerde systemen kan wel worden geïmplementeerd, maar dit gaat

ten koste van de schaalbaarheid. In de volgende paragrafen verkennen we traditionele

patronen om deze uitdagingen op te lossen binnen een microservices-architectuur of andere

systeem-tot-systeemkoppelingen.

In paragraaf beschrijven we traditioneel gebruikte patronen in een traditioneel gedistribueerd

IT-landschap.

2.12. Traditioneel gebruikte patronen in een gedistribueerd IT-landschap

2.12.1. Patroon: Two-phase commit (2PC)

Het two-phase commit-patroon wordt gebruikt om data op meerdere nodes in een

gedistribueerd systeem atomair, volgens het alles-of-niets-principe, op te slaan. De twee

fasen in dit patroon worden gecoördineerd door één centrale coördinator:

• Voorbereidingsfase (preparation phase): De coördinator stuurt een verzoek naar alle

nodes en vraagt elke deelnemer te controleren of de transactie kan worden voltooid.

• Commitfase (commit phase): Als alle deelnemers positief hebben geantwoord, stuurt

de coördinator een commit naar alle deelnemers. Als ten minste één deelnemer

negatief heeft geantwoord, stuurt de coördinator een abort naar alle deelnemers.

Edukoppeling – Asynchrone communicatie via RESTful API’s 18-25

Belangrijk in dit patroon is dat elke deelnemer in de voorbereidingsfase de duurzaamheid

(durability) van de beslissing waarborgt.

2.12.2. Patroon: Saga-patroon

Het Saga-patroon is in essentie een reeks lokale transacties in afzonderlijke systemen. Deze

reeks kan op twee manieren worden gecoördineerd:

• Elke lokale transactie publiceert berichten die lokale transacties in andere services

activeren; een choreografie van berichtensequenties.

• Een orchestrator instrueert de deelnemers welke lokale transacties zij in welke

volgorde moeten uitvoeren.

Binnen dit patroon moeten maatregelen worden genomen om een transactie “ongedaan te

maken” wanneer een vervolgstap door een deelnemer niet succesvol kan worden verwerkt.

Het ongedaan maken van een transactie is een compenserende actie, en geen strikte

rollback.

2.12.3. Patroon: Transactioneel outbox-patroon

Tijdens de verwerking van een businessoperatie schrijft een microservice het ‘uitgaande

bericht’ weg in een outbox-tabel binnen dezelfde transactie als de overige datawijzigingen.

Een achtergrondproces leest de outbox en publiceert de berichten op betrouwbare wijze

naar een message broker.

Dit zorgt ervoor dat er geen berichten verloren gaan wanneer de volledige businesslogica

niet succesvol wordt afgerond. Hierdoor worden atomaire writes mogelijk binnen het systeem

waarin de businessoperatie plaatsvond.

Edukoppeling – Asynchrone communicatie via RESTful API’s 19-25

3. Bijlage B: Richtlijnen voor idempotentie

In deze bijlage kijken we naar de praktische richtlijnen voor het implementeren van

idempotentie. Eerst bespreken we wanneer dit moet worden toegepast en vervolgens hoe.

Als laatst worden technische richtlijnen beschreven voor de implementatie.

3.1. Wanneer implementeren

Idempotentie zorgt ervoor dat het meerdere keren verwerken van hetzelfde bericht geen

schadelijke of onbedoelde neveneffecten of wijzigingen in de systeemtoestand veroorzaakt

en dat een deterministisch resultaat wordt gegarandeerd. Dit betekent ook dat niet alle

service-operaties hierdoor worden beïnvloed. Sommige service-operaties zijn per definitie

idempotent. Enkele voorbeelden:

• Elke GET-operatie is idempotent, omdat deze geen toestand wijzigt.

• Elke PUT-operatie (volgens de specificaties) vervangt of wijzigt een resource.

Voorbeeld: PUT /account/123 met {balance: 100} moet het saldo van de rekening op

100 zetten. Opnieuw toepassen levert hetzelfde resultaat op. Order guarantee is

hierbij belangrijk.

• Elke DELETE-operatie is idempotent, omdat een entiteit niet meer dan één keer kan

worden verwijderd. Aandachtspunt is de response – zie sectie 3.2.1.

• POST-operaties kunnen wel of niet idempotent zijn, afhankelijk van de functionaliteit.

Voorbeeld: POST /transactions met { amount: 100, account: 123 } kan bij herhaling

opnieuw geld toevoegen aan rekening 123, wat leidt tot een onjuist saldo.

Voorbeeld: POST /email/send zal opnieuw een e-mail versturen (er is dus een

neveneffect).

3.2. Algemene richtlijnen

De aanbevolen manier om idempotentie te implementeren is door middel van een unieke

event-ID in elk bericht. De consumer kan dan de volgende eenvoudige logica toepassen:

• Kent de consumer het message-ID al? → Verwerp het bericht.

• Kent de consumer het message-ID nog niet? → Verwerk het bericht en sla het

message-ID op.

Om volledige atomiciteit te garanderen, wordt het message-ID opgeslagen in dezelfde

transactie als de daadwerkelijke businessverwerking.

Een goede message-ID moet globaal uniek, stabiel, deterministisch en compact genoeg zijn.

Dit message-ID moet door de producer worden gegenereerd.

3.2.1. Response

Elke idempotente service zorgt ervoor dat de response bij de eerste, tweede en derde

poging identiek is. Dit is met name relevant voor services die:

• Data aanmaken: de client wil doorgaans het identificatienummer van de

aangemaakte entiteit ontvangen.

• Data verwijderen: de client moet correcte foutafhandeling kunnen implementeren. Dit

zou niet mogelijk zijn als bij een tweede DELETE-aanroep een foutresponse wordt

teruggegeven.

Edukoppeling – Asynchrone communicatie via RESTful API’s 20-25

3.3. Technische implementatierichtlijnen: Idempotentie

Idempotentie zorgt ervoor dat meerdere identieke verzoeken hetzelfde effect hebben als één

enkel verzoek. Dit is cruciaal voor scenario’s waarin clients verzoeken opnieuw proberen te

versturen vanwege time-outs, netwerkfouten of onherstelbare fouten aan de clientzijde.

Deze technische richtlijnen zijn gebaseerd op een bestaand Internet Engineering Task Force

(IETF)-concept 17 en bieden aanvullende richtlijnen om consistente implementatie en

efficiënte systeemintegratie binnen de onderwijssector te ondersteunen. Eerst worden de

idempotentieconventies binnen de sector beschreven, daarna volgt een gedetailleerd

implementatievoorbeeld op basis van deze conventies.

3.3.1. Idempotentieconventies

Alle operaties die resources aanmaken of muteren, typisch POST- en PATCH-operaties,

moeten een Idempotency-Key-header gebruiken. Hoewel DELETE-operaties per definitie 18

idempotent zijn, kunnen clients in een gedistribueerd systeem met retries inconsistente

responses krijgen. Daarom zouden DELETE-operaties ook een idempotency key moeten

gebruiken.

Elke operatie die niet voldoet aan de standaarden voor het gebruik van HTTP-methoden 19

en resources aanmaakt of wijzigt, moet eveneens worden meegenomen.

3.3.2. Uniekheid idempotentie sleutel

Een UUIDv4 20 (RFC4122) moet worden gebruikt als idempotentie-sleutel.

3.3.3. Geldigheid en verloop van idempotentie sleutel

De geldigheid en vervaldatum van de idempotency key zouden rekening moeten houden met

de tijd die nodig is voor automatische en/of handmatige retry-mechanismen en met de

mogelijkheid van herhalingen (worstcasescenario na een restore door de client).

De time-to-live (TTL) voor een idempotency-entry zouden gebaseerd moeten zijn op het

maximaal verwachte replay-venster: met andere woorden, het maximale tijdsvenster waarin

een bericht opnieuw kan worden aangeboden. Een vervalperiode van 7 dagen wordt

aanbevolen.

3.3.4. Idempotentie fingerprint

Voor extra veiligheid moet een idempotentie fingerprint worden aangemaakt. Aanbevolen

wordt om de volledige request-payload te gebruiken om deze fingerprint te genereren.

17 draft-ietf-httpapi-idempotency-key-header-07 - The Idempotency-Key HTTP Header Field
18 RFC 9110: HTTP Semantics
19 RFC 9114: HTTP/3
20 RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace

https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/
https://www.rfc-editor.org/rfc/rfc9110#section-9.2.2
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/rfc4122

Edukoppeling – Asynchrone communicatie via RESTful API’s 21-25

3.3.5. Verantwoordelijkheden client

Clients moeten de idempotentie sleutel opslaan voor de volledige levensduur van de operatie

(oftewel de TTL die door de resource is gespecificeerd). Dit garandeert dat de sleutel uniek,

stabiel, deterministisch en constant blijft gedurende de operatie. De client MAG hiervoor het

transactional outbox-patroon gebruiken (zie bijlage A).

Clients moeten voor één idempotency key dezelfde request-payload versturen om HTTP

422-fouten van de resource te voorkomen.

Clients zouden automatische retries moeten stoppen nadat de TTL van de resource is

verlopen. Daarna kan de client er niet langer van uitgaan dat de resource de idempotentie

sleutel nog heeft opgeslagen. Handmatige bevestiging binnen de clientapplicatie zou dan

moeten worden gestart en een nieuw verzoek moet een nieuwe sleutel bevatten.

3.3.6. Verantwoordelijkheden resource

De resource moet bij een duplicaatverzoek de response retourneren van de eerder voltooide

operatie. Met name DELETE-verzoeken zouden ook dezelfde response moeten retourneren

als eerder.

Als de resource meerdere clients ondersteunt, moet de opslag van idempotency keys per

client worden gescheiden om het risico op botsingen te elimineren.

Om volledige atomiciteit te waarborgen, zou de idempotency key moeten worden

opgeslagen in dezelfde transactie als de daadwerkelijke businessverwerking.

3.3.7. Foutafhandeling

De resource moet de idempotency key valideren voordat verdere verwerking plaatsvindt. Als

een ongeldige idempotency key wordt aangeleverd, zou de resource moeten antwoorden

met een HTTP 400-statuscode.

3.3.8. Client side implementatie (voorbeeld)

De volgende informatie kan in een outbox worden vastgelegd volgens het transactional

outbox-patroon:

• event_id

• event_type

• payload

• schema_version

• created_at

• expires_at (moment waarop het event niet langer geldig wordt verklaard, bijvoorbeeld

na het verstrijken van de TTL van de resource)

• idempotency_key (de UUIDv4)

• status (pending, acknowledged, failed)

De logica aan de clientzijde kan er als volgt uitzien:

1. Een business-event wordt vastgelegd inclusief alle metadata.

2. Zoek business-events met status pending.

Edukoppeling – Asynchrone communicatie via RESTful API’s 22-25

3. Als expires_at > now(), zet de status op failed.

4. Anders:

a. Lees het business-event.

b. Exporteer het business-event en wacht op de response.

c. Als de response een 4XX-fout aangeeft, los het probleem in de applicatie op.

d. Als de response een 5XX-fout aangeeft, zet de status op failed.

e. Als de response succesvolle verwerking aangeeft, verwijder het business-event of

zet de status op acknowledged.

3.3.9. Resource implementatie (voorbeeld)

Alle API’s die resources aanmaken of muteren, typisch POST, DELETE en PATCH-

operaties, MOETEN een Idempotency-Key-header ondersteunen.

De volgende informatie kan worden opgeslagen in een idempotency key-tabel:

• idempotency_key

• idempotency_fingerprint (hash van het request)

• resource_id (indien van toepassing)

• client_id (indien van toepassing)

• response_status_code

• response_body

• created_at

• expires_at

De validatie aan de resourcezijde kan er als volgt uitzien:

1. Valideer de aanwezigheid én het formaat van de idempotency key. Indien deze

ontbreekt of ongeldig is, retourneer een HTTP 400-fout.

2. Zoek de idempotency_key op voor resource_id + client_id in de tabel.

a. Indien aanwezig én de idempotency fingerprint niet overeenkomt, retourneer een

HTTP 422-fout.

b. Indien aanwezig, retourneer de opgeslagen response.

3. Probeer een idempotency-lockrecord te verkrijgen inclusief vervaltijd. Als dit mislukt,

verwerkt een ander proces deze key op dat moment en wordt een HTTP 409-fout

geretourneerd.

4. Start een transactie:

a. Verwerk de businesslogica.

b. Voeg het idempotency-record inclusief response toe aan de tabel.

5. Commit de transactie en geef de idempotency-lock vrij.

6. Retourneer de response van de businesslogica.

Daarnaast kan een automatisch proces de idempotency key-entries opschonen waarvoor

expires_at > now().

Edukoppeling – Asynchrone communicatie via RESTful API’s 23-25

4. Bijlage C: Begrippen

Antwoord: Een antwoord is de inhoudelijke reactie op een verzoek: het resultaat van een

operatie of vraag.

API aanbieder (ook wel API provider): Ketenpartner die binnen een ketensamenwerking een

RESTful API aanbiedt.

API afnemer (ook wel API provider): Ketenpartner die binnen een ketensamenwerking met

een systeem een RESTful API afneemt.

Asynchroon: Bij asynchrone communicatie stuurt een computersysteem een bericht of event

en ontvangt hoogstens een bevestiging van ontvangst. De verwerking vindt losgekoppeld en

later plaats en levert geen direct antwoord op.

Atomiciteit: Binnen de grenzen van één enkel computersysteem zorgen transacties ervoor

dat óf alle wijzigingen óf geen van de wijzigingen worden opgeslagen. Dit concept van

atomiciteit zorgt ervoor dat een transactie “alles of niets” is.

Bevestiging: Een bevestiging van ontvangst geeft alleen aan dat het bericht technisch correct

is ontvangen, niet dat het al is verwerkt.

Client secret: Een vertrouwelijke sleutel die alleen bekend is bij de client en afhankelijk van

de vorm (symmetrisch (wachtwoord) of asymmetrisch (PKI)) ook bij de Authorization Server.

Het wordt gebruikt om de client bij de Authorization Server te kunnen authenticeren via het

token endpoint.

Confidential client21: Een confidential client is een client die draait in een omgeving waar

vertrouwelijke gegevens (waaronder het client secret) veilig bewaard kunnen worden

(bijvoorbeeld server-side webapplicaties).

Consumer: Een “consumer” ontvangt het event en onderneemt actie op basis daarvan. De

consument gebruikt de context en de data om logica uit te voeren, wat kan leiden tot het

optreden van nieuwe events.

Consumeren: Het lezen/verkrijgen van een event vanuit de Intermediary.

Context: Contextmetadata zijn vastgelegd in de contextattributen. Tools en applicatiecode

kunnen deze informatie gebruiken om de relatie van events met onderdelen van het

computersysteem of met andere events te identificeren.

Data: Domeinspecifieke informatie (oftewel de payload). Dit kan informatie bevatten over de

gebeurtenis zelf, details over gewijzigde gegevens of andere relevante gegevens.

21 https://datatracker.ietf.org/doc/html/rfc6749#section-2.1

https://datatracker.ietf.org/doc/html/rfc6749#section-2.1

Edukoppeling – Asynchrone communicatie via RESTful API’s 24-25

DLQ (Dead Letter Queue): een aparte queue waarin events terechtkomen die na meerdere

retries niet succesvol verwerkt konden worden.

Deterministisch: Het resultaat is hetzelfde, ongeacht hoe vaak de operatie wordt herhaald.

Idempotentie: Het meerdere keren verwerken van een identiek verzoek veroorzaakt geen

schadelijke of onbedoelde neveneffecten of wijzigingen in de systeemtoestand en garandeert

een deterministisch resultaat.

Intermediary: Een “intermediary” ontvangt een bericht dat een event bevat met als doel dit

door te sturen naar de volgende ontvanger. Dit kan een andere intermediair of een

consument zijn. Een typische taak van een intermediair is het routeren van events naar

ontvangers op basis van de informatie in de context.

Order guarantee: Order guarantee is het concept dat berichten worden verwerkt in de

volgorde waarin ze zijn geproduceerd. Dit voorkomt dat een status wordt teruggezet naar

een oude waarde terwijl een nieuwere waarde al is verwerkt.

Producer: De “producer” is een specifieke instantie, proces of apparaat dat de datastructuur

aanmaakt die het CloudEvent beschrijft.

Produceren: Het creëren van een event en het afleveren ervan bij de Intermediary.

Replay: Het opnieuw aanbieden van eerder opgeslagen events om ze (opnieuw of alsnog) te

verwerken.

Retry: Het opnieuw proberen te verwerken van een event nadat de eerste verwerking is

mislukt, vaak vanuit een apart gezette queue.

RESTful API: Een RESTful API is een application programmable interface (API) die HTTP-

methoden, zoals GET, POST, PUT, PATCH en DELETE, gebruikt om resources te beheren.

Resources worden geïdentificeerd via URIs (Uniform Resource Identifiers) en worden

doorgaans geretourneerd in JSON- of XML-formaat. We noemen ze RESTful omdat ze niet

aan alle REST22 principes23 hoeven te voldoen.

Synchroon: Bij synchrone communicatie stuurt een systeem een verzoek en wacht op het

antwoord (response). Dit antwoord wordt pas teruggestuurd nadat de verwerking is afgerond.

Verwerking: Verwerking is het daadwerkelijk uitvoeren van de businesslogica op basis van

het ontvangen bericht of verzoek.

22 REST - Wikipedia
23 Dit Edukoppeling-profiel gaat uit van vertrouwelijke gegevens waarbij ketenpartners weten wat ze van elke
vragen binnen een bepaalde ketensamenwerking. Ondersteuning van HATEOAS lijkt niet noodzakelijk.

https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/HATEOAS

Edukoppeling – Asynchrone communicatie via RESTful API’s 25-25

5. Bijlage D: Referenties

• CloudEvents standaard: https://github.com/cloudevents/spec/blob/v1.0.1/spec.md

• CloudEvents profiel Logius:
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/

• JSON Event Format: https://github.com/cloudevents/spec/blob/v1.0.1/json-
format.md

• Webhook: https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md

https://github.com/cloudevents/spec/blob/v1.0.1/spec.md
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md

