edustandaard

Edukoppeling

Asynchrone M2M gegevensuitwisseling binnen het

onderwijs
Werkdocument Asynchrone communicatie via RESTful API’s

Edustandaard
Datum: 11 februari 2026
Status: concept

Inhoudsopgave
1. Inleiding

1.1. Doel en doelgroep

1.2. Doel van Edukoppeling

1.3. Positionering van Edukoppeling in het Edustandaard vijflagen model

1.4. Uitgangspunten voor de Edukoppeling-standaard
1.5. Aanleiding
1.5.1. Ontwikkelingen
1.5.2. Advies
2. Profiel
2.1. Edukoppeling-aanbod: Notificaties / Signalen
2.2. CloudEvents
2.21. Rollen
2.2.2. |Interacties
2.3. Event levering semantiek
2.3.1. Aflevergaranties
2.3.2. Consumer garanties
2.3.3. End-to-end exactly-once verwerking in een EDA
2.3.4. Trade-offs
24, Uitgangspunten voor het profiel
2.5. Registratie
2.6. Producer
2.7. Intermediary
2.8. Consumer
2.9. Technische contracten
2.9.1. Contract register
2.10. CloudEvent beveiligingsopties
3. Bijlage A: Uitdagingen in een gedistribueerd landschap

3.1. Traditionele uitdagingen in een gedistribueerd IT-landschap

3.2 Traditioneel gebruikte patronen in een gedistribueerd IT-landschap

3.2.1. Patroon: Two-phase commit (2PC)
3.2.2. Patroon: Saga-patrron
3.2.3. Patroon: Transactioneel outbox-patroon
4. Bijlage B: Richtlijnen voor idempotentie
4.1. Wanneer implementeren

4.2. Algemene richtlijnen

Edukoppeling — Asynchrone communicatie via RESTful API’s

2-25

edustandaard

© 0 0 00 O O o 0 »~ ~h b~ b

10
11
11
12
12
13
13
14
14
14
15
16
17
17
17
17
18
18
19
19
19

4.2.1.

4.3.

4.3.1.
4.3.2.
4.3.3.
4.3.4.
4.3.5.
4.3.6.
4.3.7.
4.3.8.
4.3.9.

Response

Technische implementatierichtlijnen: Idempotentie
Idempotentieconventies
Uniekheid idempotentie sleutel
Geldigheid en verloop van idempotentie sleutel
Idempotentie fingerprint
Verantwoordelijkheden client
Verantwoordelijkheden resource
Foutafhandeling
Client side implementatie (voorbeeld)

Resource implementatie (voorbeeld)

5. Bijlage C: Begrippen

6. Bijlage D: Referenties

Edukoppeling — Asynchrone communicatie via RESTful API’s

edustandaard

3-25

19
20
20
20
20
20
21
21
21
21
22
23
25

edustandaard

1. Inleiding

1.1. Doel en doelgroep

Dit werkdocument ondersteunt de ontwikkeling van een nieuwe versie van Edukoppeling.
Het bevat voorschriften om asynchrone M2M communicatie via RESTful API’'s (hierna
Edukoppeling-profiel) te bewerkstelligen. Dit document is bedoeld voor de leden van de
Edukoppeling werkgroep. Hen wordt gevraagd om dit document te reviewen en aan te
passen waar nodig.

1.2. Doel van Edukoppeling

Edukoppeling schrijft voor hoe onderwijsorganisaties, publieke uitvoeringsorganisaties,
leveranciers en andere ketenpartners gegevensuitwisselingen opzetten. De standaard gaat
over de afhandeling van berichten (het transport) en niet over de inhoud van berichten. Het is
een functioneel technische standaard, maar zal ook aansluiting moeten vinden op kaders
van andere architectuurlagen. Hoe Edukoppeling aansluit op bredere afspraken is aan
ketensamenwerkingen' waarin de standaard als onderdeel van de afspraak of het
afsprakenstelsel wordt gevat.

Edukoppeling regelt de volgende ketenfuncties: identificatie, authenticatie, autorisatie en
routering, op de ‘uitwisselingslaag’. Dit om de zorgen dat vertrouwelijke gegevens tijdens
transport van de ene naar de andere organisatie, niet ongeoorloofd worden ingezien of
gemanipuleerd.

Edukoppeling heeft als scope alle werkingsgebieden vallend onder alle onderwijssectoren en
moet hiermee ook tegemoetkomen aan de diversiteit in processen en technische inrichting
van deze onderwijssectoren en ketens. Er wordt wel gestreefd naar uniformiteit, omdat er
tussen ketens vanuit diverse werkingsgebieden steeds meer sprake kan zijn van
gegevensuitwisseling, maar er moet ook voldoende flexibiliteit geboden worden om daar
waar nodig andere keuzes te kunnen maken.

1.3. Positionering van Edukoppeling in het Edustandaard vijflagen model

Het Edustandaard 5-lagen model? onderkent de volgende lagen:

e grondslagenlaag: borgt de juridische basis en beleidskaders waarbinnen
gegevensuitwisseling is toegestaan;

e organisatorische laag: ketensamenwerking afspraken over wie welke rol heeft, welke
gegevensdiensten, interfaces en interactiepatronen er zijn en welke gegevens onder
welke condities uitgewisseld worden;

e informatielaag: semantiek, waaronder gegevensdefinities, informatiemodellen en de
gebruikte identifiers voor rechtspersonen en natuurlijke personen;

1 Ketensamenwerkingen zijn bijvoorbeeld OKE, Edu-V, ROD ec. (zie ook: https://rosa-
begrippenkader.wikixl.nl/index.php/Begrip:27a6accf-472d-4415-bc5b-1e9de17bf288#tab=Betekenis)

2 AMIGO-methodiek-1.1.0-1.pdf en

https://rosa.wikixl.nl/index.php/Interoperabiliteit en het Edustandaard lagenmodel#Opbouw van het lagenmod
el

Edukoppeling — Asynchrone communicatie via RESTful API’s 4-25

https://rosa-begrippenkader.wikixl.nl/index.php/Begrip:27a6accf-472d-4415-bc5b-1e9de17bf288#tab=Betekenis
https://rosa-begrippenkader.wikixl.nl/index.php/Begrip:27a6accf-472d-4415-bc5b-1e9de17bf288#tab=Betekenis
https://www.edustandaard.nl/app/uploads/2025/10/AMIGO-methodiek-1.1.0-1.pdf
https://rosa.wikixl.nl/index.php/Interoperabiliteit_en_het_Edustandaard_lagenmodel#Opbouw_van_het_lagenmodel
https://rosa.wikixl.nl/index.php/Interoperabiliteit_en_het_Edustandaard_lagenmodel#Opbouw_van_het_lagenmodel

edustandaard

applicatielaag: API's en hun beveiligingsprofielen, berichtspecificaties, payload
beveiliging, interactiepatronen en foutafhandeling;

IT-infrastructuurlaag: transportprotocollen en technische beveiligingsmechanismen
zoals TLS.

Het Edukoppeling-profiel heeft binnen het Edustandaard 5 lagen model met name betrekking
op de applicatielaag, levert daarmee een belangrijke ondersteuning aan met name laag 2 en
heeft een relatie met de IT-infrastructuurlaag.

1.4.
1.

Uitgangspunten voor de Edukoppeling-standaard

Het organisatorisch werkingsgebied: onderwijs® waaronder alle door de overheid
erkende onderwijsorganisaties die binnen de sectoren po, vo, mbo/bve en ho vallen
en hun dienstverleners.

Het functioneel toepassingsgebied: geautomatiseerde uitwisseling van vertrouwelijke
gegevens (gesloten data) tussen informatiesystemen van onderwijsorganisaties en
ketenpartners (onderling, met bedrijven of met de overheid). Deze uitwisseling betreft
M2M point-to-point verbinding voor uitwisseling tussen een confidential client en een
gesloten APl waarbij de toegang is geregeld met OAuth.

a. De client kan zowel een computersysteem van een onderwijsorganisatie als
van een dienstverlener zijn.

b. Of en hoe mandatering is ingericht valt buiten de scope van deze versie. Wel
wordt aangenomen dat de Authorization Server een rol heeft bij
mandaatverificatie. Daar waar mandaten van toepassing zijn, wordt er geen
access token uitgegeven als er geen valide mandaat bestaat.

Edukoppeling is gebaseerd op internationale open standaarden en
onderwijsstandaarden geregistreerd bij Edustandaard.

Er wordt als mogelijk een volwassen industry standard gekozen. Dit om te voorkomen
dat nieuwe/kleine partijen te maken krijgen met (te) grote integratiedrempels.
Edukoppeling-profielen zijn op zichzelf staande documenten. We verwijzen naar
internationale open standaarden en onderwijsstandaarden (bijvoorbeeld UBV TLS*).

. Als we gebruik maken van (delen van) nationale standaarden (bijvoorbeeld NL GOV

of Digikoppeling) dan worden relevante aspecten overgenomen met bronvermelding.
De standaard volgt ontwikkelingen en wordt onder Edustandaard beheer
doorontwikkeld.

Afhankelijk van de karakteristieken van een ketensamenwerking kan het nodig zijn
om meerdere varianten/keuzes binnen het profiel te ondersteunen.
Edukoppeling-profielen gaan niet over de inhoud van de uitwisseling en ook niet over
het design van API’s.

3 https://rosa.wikixl.nl/index.php/Werkingsgebieden

4 https://www.edustandaard.nl/standaard afspraken/uniforme-beveiligingsvoorschriften/

Edukoppeling — Asynchrone communicatie via RESTful API’s 5-25

https://rosa.wikixl.nl/index.php/Werkingsgebieden
https://www.edustandaard.nl/standaard_afspraken/uniforme-beveiligingsvoorschriften/

edustandaard

1.5. Aanleiding

Binnen het Groeifondsprogramma Npuls werken Studielink, SURF en MBO Digitaal samen
aan het onderbrengen van het huidige Studielink / Cambo in één nieuwe centrale
voorziening voor het Aanmelden, Inschrijven en Intekenen (ook wel project All). Als
onderdeel van dit project worden ook de koppelvlakken met sectorpartners
(onderwijsinstellingen, DUO, etc.) opnieuw onder de loep genomen, zodat daar voor het
onderwijs een oplossing wordt neergezet conform de modernste standaarden en die past bij
de strategie van de Nederlandse overheid en het daarbinnen vallende onderwijs (i.e. semi-
overheid).

Vernieuwing van koppelvlakken vereist afstemming en dit wordt vanuit Edustandaard
gefaciliteerd. Deze notitie biedt richting aan het toekomstige koppelvlak op het gebied van
asynchrone machine-to-machine (M2M) integraties.

1.5.1. Ontwikkelingen
In deze paragraaf worden relevante ontwikkelingen binnen de overheid en IT beschreven die
inspiratie bieden voor ontwikkeling binnen het onderwijs.

¢ Digikoppeling (ondersteunen door Logius) voor overheidsorganisaties vernieuwd
regelmatig. Zo geldt ook dat Digikoppeling Architectuur 2.1.1 (januari 2025) ° een
uitgebreider aanbod heeft voor uitwisselingen; specifieke te benoemen: 4.4.4.
Notificaties en Signalen.

e patroon voor gegevens uitwisseling binnen Event Driven Architecturen. Dit is één
van de nieuwe patronen binnen de Digikoppeling Architectuur 2.1.1 en is daarbij een
mogelijk bruikbaar patroon in de toolbox van een architect. Dit verwijst 0.a. naar een
JSON Event Format © voor CloudEvents en Web Hooks 7 voor Event Delivery. Een
definitieve versie 1.0 & is momenteel al beschikbaar en definitieve concept versie 1.1 °
ligt nu nog ter voorstel voor.

e AsyncAPI specificatie initiatief voor het beschrijven van event-driven APIs °

e Een voorgestelde IETF-standaard, om idempotency '' te implementeren voor HTTP
methoden die niet als veilig worden gezien, die toegevoegde waarde heeft voor
robuuste end-to-end Event Driven Architecturen.

1.5.2. Advies
Het Edukoppeling-profiel kent momenteel al een transactiepatroon voor asynchrone melding-
bevestiging. Dit transactiepatroon maakt gebruik van REST-APIs, vaak gespecificeerd via
een OpenAPI-specificatie ', i.e. hoe ook het synchrone bevragingen/meldingen patroon
wordt vormgegeven.

Dit maakt de koppeling tussen aflevering van het bericht en inhoud nauw aan elkaar
verknoopt. Het gebruik van CloudEvents (zoals beschreven in 2.2) zorgt juist voor

5 https://gitdocumentatie.logius.nl/publicatie/dk/architectuur/2.1.1/

6 https://qgithub.com/cloudevents/spec/blob/v1.0.1/json-format.md

" https://qgithub.com/cloudevents/spec/blob/v1.0.1/http-webhook.md

8 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/
9 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
10 https://www.asyncapi.com/en

" hitps://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/

12 hitps://www.forumstandaardisatie.nl/open-standaarden/openapi-specification

Edukoppeling — Asynchrone communicatie via RESTful API’s 6-25

https://gitdocumentatie.logius.nl/publicatie/dk/architectuur/2.1.1/
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
https://www.asyncapi.com/en
https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/
https://www.forumstandaardisatie.nl/open-standaarden/openapi-specification

edustandaard

ontkoppeling van aflevering en inhoud. Voor asynchrone communicatie is daarom de
voorkeur om deze vorm van uitwisseling uit het aanbod te gaan gebruiken.

Dit geldt niet alleen voor simpele notificaties en signalen (zoals de Digikoppeling standaard
voorschrijft), maar aanvullend ook voor het bereiken van losgekoppelde
gegevensuitwisselingen.

Edukoppeling — Asynchrone communicatie via RESTful API’s 7-25

edustandaard

2. Profiel

2.1. Edukoppeling-aanbod: Notificaties / Signalen

Asynchrone communicatie via RESTful API is een uitbreiding op het Edukoppeling-profiel en
biedt aanvullend aanbod voor uitwisseling van gegevens. Door toevoeging van dit patroon in
de gegevensuitwisseling wordt een zogenaamde Event Driven Architecture (EDA)
gerealiseerd.

Een Event Driven Architecture (EDA) biedt een aantal voordelen ten opzichte van meer
synchrone architecturen, zoals een Service Oriented Architectuur (SOA). Dit biedt
verschillende voordelen ten opzichte van transactiepatronen die nu worden gebruikt:

A. Ontkoppeling van systemen: Deze architectuur is van nature losjes gekoppeld, omdat
applicaties met elkaar communiceren via gebeurtenissen (en een tussenlaag — ook
wel Intermediary). Dat maakt het eenvoudiger om applicaties onafhankelijk van elkaar
te ontwikkelen, testen en implementeren.

B. Asynchrone communicatie: In een EDA hoeven aanvragen niet op elkaar te wachten.

C. Schaalbaarheid en gemak van het toevoegen van nieuwe consumenten: EDA maakt
het gemakkelijk om nieuwe applicaties of diensten te implementeren en te integreren
zonder de bestaande te beinvioeden.

D. Hoge doorvoer en low latency: Een EDA kan een groot aantal events met een lage
latency verwerken.

Dit patroon is niet alleen bruikbaar voor simpele notificaties en signalen (zoals de
Digikoppeling standaard voorschrijft), maar aanvullend ook voor het bereiken van
losgekoppelde gegevensuitwisselingen.

2.2. CloudEvents

Dit hoofdstuk beschrijft de aanvullende voorschriften op de CloudEvents standaard die de
basis vormt voor asynchrone communicatie binnen het Edukoppeling-profiel. Het
Edukoppeling-profiel biedt op een aantal punten keuzemogelijkheden. Hiermee beogen we
een profiel dat een verplichte basisset van voorschriften bevat, maar ook genoeg ruimte
biedt voor passende configuraties om voor ketenpartners binnen een bepaalde
ketensamenwerking niet onoverkomelijke drempels op te werpen. Het is aan een
ketensamenwerking om te bepalen welke opties van toepassing zijn.

Dit profiel moet worden toegepast wanneer er binnen een ketensamenwerking asynchrone
gegevensuitwisseling plaatsvindt tussen confidential clients en RESTful API's. De
CloudEvents standaard is gebaseerd op het principe van het niet opleggen van meer eisen
op de betrokken partijen dan noodzakelijk.

Het onderwijsveld bestaat uit verschillende ketenpartners die ieder verantwoordelijk zijn voor
een deel van de keten en zijn systemen. De CloudEvents standaard moet daarom in de

context van deze ketensamenwerking worden geplaatst.

De rollen en interacties worden hieronder verder toegelicht.

Edukoppeling — Asynchrone communicatie via RESTful API’s 8-25

edustandaard

2.2.1. Rollen
Het basispatroon beschrijft een applicatie in de rol van ‘producer’ die ‘events’ publiceert:
dataregistraties die een gebeurtenis en de bijbehorende context vastleggen. Gepubliceerde
events kunnen worden geconsumeerd door applicaties in de rol van ‘consumer’. Consumers
abonneren zich op bepaalde type events. Er kunnen één of meerdere applicaties in de rol
van ‘intermediary’ zijn die zorgdragen voor het routeren van events naar consumers op basis
van contextuele informatie. Dit is vergelijkbaar met het publish-subscribe-patroon:

> >

Producer Intermediary Consumer

Figuur 1 - Publish-subscribe patroon

In dit patroon is het duidelijk dat de producer wordt beheerd door de ketenpartner die
berichten produceert en de consumer wordt beheerd door de ketenpartner die de berichten
consumeert, en asynchroon verwerkt. Voor de Intermediary is dit niet direct duidelijk en is er
momenteel ook binnen de (semi-)overheid geen één centrale partij toe te wijzen die
logischerwijs dit beheer op zich kan nemen. We kiezen hiervoor om binnen de CloudEvents
patronen per ketenpartner een Intermediary te implementeren. Dit zorgt ervoor dat elke
dienstverlener deze Intermediary naar eigen inzicht kan inrichten en beheren:

Producer @ Intermediary @ Consumer

Ketenpartner A Ketenpartner B Ketenpartner B

Consumer Intermediary Producer

Ketenpartner A Ketenpartner A Ketenpartner B

Figuur 2 - Intermediary per ketenpartner

Deze aanpassing aan het patroon betekent dat elke partij een API-endpoint definieert waar
CloudEvents naar verstuurd kunnen worden.

De rollen worden respectievelijk in paragrafen 2.5, 2.7 en 2.8 nader toegelicht.

2.2.2. Interacties
Deze componenten hebben de volgende interacties:
e Berichtenverkeer partij A naar partij B:
o De producer van partij A produceert events naar de Intermediary van partij B.
o De Intermediary B persisteert het event zodanig dat consumer partij B deze
kan consumeren of stuurt het event direct door naar consumer partij B.
o Consumer partij B verkrijgt het event van Intermediary B gerouteerd/gepushed
of consumeert de events van Intermediary B.
e Berichtenverkeer partij B naar partij A:
o De producer van partij B produceert events naar de Intermediary van partij A.

Edukoppeling — Asynchrone communicatie via RESTful API’s 9-25

edustandaard

o De Intermediary A persisteert het event zodanig dat consumer partij A deze
kan consumeren of stuurt het event direct door naar consumer partij A.

o Consumer partij A verkrijgt het event van Intermediary A gerouteerd/gepushed
of consumeert de events van Intermediary A.

De componenten en interacties worden weergegeven in Figuur 3 - CloudEvents uitwisseling.

Patroen (nieuw)
CloudEvents voor asynchrone meldingen / notificaties

i Option A- '
Publish Event 'Payload’ Push / route events
. >—‘—|
* __ *
Afhandeling
L L
Event heeft een data schema . —:—|
Protocol / endpoint / formaat is gelijk voor Option B:
berichten! Consume events Afhandeling
V """""""""" iny
:) P Publish Event 'Payload" :
i Option A: D S
Push / route events . e
— : T
Afhandeling e ——— : '

Option B:
. Consume events
Afhandeling _—

Figuur 3 - CloudEvents uitwisseling

2.3. Event levering semantiek

In een gedistribueerd landschap heb je traditioneel te maken met de uitdaging van
atomiciteit. Dit geldt ook voor het event-uitwisseling.

2.3.1. Aflevergaranties
Als het gaat om aflevergaranties richting een Intermediary zijn er drie opties:
e At most once: een bericht kan worden afgeleverd, maar nooit meer dan één keer. Dit
kan leiden tot verlies van berichten en wordt daarom zelden, zo niet nooit, gebruikt.
o At least once: een bericht wordt afgeleverd, maar kan meer dan één keer worden
afgeleverd. Dit kan leiden tot dubbele berichten.
o Exactly once: een bericht wordt precies één keer afgeleverd.

Edukoppeling — Asynchrone communicatie via RESTful API’s 10-25

edustandaard

De reikwijdte van deze garanties ligt echter alleen binnen de event-broker en niet daarbuiten,
zoals in een gedistribueerd IT-landschap. In een volledig robuust IT-landschap moeten we
rekening houden met end-to-end robuuste aflevering en uitgaan van het worstcasescenario.

Een worstcasescenario is wanneer een producer crasht / herstart / stopt tijdens de
verwerking van een event. Met name in een schaalbare infrastructuur is dit een realistisch
scenario. Afhankelijk van het exacte moment van de crash kunnen zich verschillende
situaties voordoen:

Als de producer het event nog niet heeft geproduceerd: de producer zal het event
opnieuw proberen te leveren. Dit vormt geen probleem.

Als de producer het event heeft geproduceerd en geen andere status hoeft bij te
houden (meestal wanneer de event-broker de enige bron van waarheid is): dit vormt
geen probleem.

Als de producer het event heeft geproduceerd, maar het event nog niet als afgeleverd
heeft gemarkeerd: de producer zal het event opnieuw proberen te produceren, wat
leidt tot dubbele events. Zonder mitigerende maatregelen aan de consumer-zijde kan
dit tot problemen leiden.

2.3.2. Consumer garanties
Wat betreft consumer-garanties vanuit een event-broker zijn er drie opties:

At most once: een bericht kan worden geconsumeerd, maar nooit meer dan één keer.
Dit kan leiden tot verlies van berichten en wordt daarom zelden, zo niet nooit,
gebruikt. Dit treedt typisch op wanneer een bericht als verwerkt wordt gemarkeerd
voor de verwerking, maar de verwerking daarna faalt.

At least once: een bericht wordt geconsumeerd, maar kan meer dan €én keer worden
geconsumeerd. Dit kan leiden tot dubbele verwerking. Dit treedt typisch op wanneer
een bericht pas na de verwerking als verwerkt wordt gemarkeerd, maar het markeren
faalt en het bericht opnieuw wordt geconsumeerd.

Exactly once: een bericht wordt exact één keer verwerkt. Een bericht kan vaker dan
één keer worden geconsumeerd, maar de verwerking moet exact één keer
plaatsvinden. In onze gedistribueerde opzet is dit zonder aanvullende maatregelen
per definitie niet mogelijk, vanwege de uitdagingen rond atomiciteit.

2.3.3. End-to-end exactly-once verwerking in een EDA
In deze sectie bekijken we hoe echte end-to-end exactly-once verwerking kan worden
gerealiseerd binnen een Event-Driven Architecture (EDA). Daarbij zorgen we ervoor dat:
A. Een producer events at least once produceert. In normale omstandigheden

produceert een producer altijd exactly once, maar in foutscenario’s kan dit vaker
gebeuren.

Een consumer events at least once consumeert. In normale omstandigheden
consumeert een consumer altijd exactly once, maar in foutscenario’s kan dit vaker
gebeuren.

De verwerking exactly once wordt uitgevoerd door middel van idempotentie (zie
bijlage B) in de ontvangende service.

Dit zorgt voor een minimale extra impact op de performance aan de verwerkingskant en
waarborgt uiteindelijke atomiciteit zonder dataverlies of duplicatie.

Edukoppeling — Asynchrone communicatie via RESTful API’s 11-25

edustandaard

2.3.4. Trade-offs
We gaan uit van een moderne EDA en vergelijken traditionele patronen (zie ook bijlage A)
2PC, Saga en idempotentie:

2PC Saga Idempotentie
Schaalbaarheid - + +++
Complexiteit - --- (compenserende acties, +
(codrdinatie) | orkestratie)
Latency - - +++
EDA-vriendelijk - +++ +++
Impact op - - -
leveranciers/keten
Eindscore - +- ++

In bijlage B worden richtlijnen voor het implementeren van idempotentie beschreven.

2.4. Uitgangspunten voor het profiel

1.

Dit Edukoppeling-profiel is gebaseerd op de internationale open standaarden rond
CloudEvents. Het fundament is de CloudEvents specificatie, opgesteld door Cloud
Native Computing Foundation (CNCF).

Dit Edukoppeling-profiel volgt de richtlijnen zoals beschreven in het NL GOV profile
for CloudEvents *3:
a. Context attributen (H3);
b. Event Data (H4);
c. Size Limits (H5);
d. Gebruik van JSON, HTTP en webhook (bijlage A) zoals ook beschreven in de
Guidelines for NL-GOV profile CloudEvents 4.

Met uitzondering van:
e. CloudEvent Security Options (H6);
f. Abuse protection as described in the guidelines .

In paragraaf 2.10 CloudEvent beveiligingsopties worden de beveiligingsopties binnen
dit profiel beschreven.

Dit Edukoppeling-profiel is alleen van toepassing in de context van confidential
clients.

Dit Edukoppeling-profiel volgt het OAuth client credentials profiel voor RESTful API’s
voor machine-to-machine (M2M) gegevensuitwisseling binnen het onderwijs.

3 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/

4 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/quidelines/1.0/

5 https://gitdocumentatie.logius.nl/publicatie/notificatieservices/quidelines/1.0/

Edukoppeling — Asynchrone communicatie via RESTful API’s 12-25

https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/1.0/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/1.0/

edustandaard

5. Dit Edukoppeling-profiel schrijft het gebruik van Transport Layer Security (TLS)
voor conform UBV TLS.

2.5. Registratie

De ketenpartner die verantwoordelijk is voor de producer (hierna: producer) is ervoor
verantwoordelijk dat een portaal en/of proces beschikbaar gesteld voor registratie van de
ketenpartners die verantwoordelijk is voor de consumer (hierna: consumer).

De registratie volgt een aantal stappen:
- Ketenpartners spreken het voornemen uit naar elkaar om berichtuitwisseling via
CloudEvents op te zetten.
- De consumer accepteert en registreert dat.

Bij registratie is het van belang dat de producer alleen gegevensleveringen naar consumers
mogelijk maakt die toegang mogen hebben tot de data die wordt uitgewisseld. Dit stelt de
producer zeker. De producer maakt het mogelijk via een portaal/proces om een
afleverlocatie te configureren / aan te leveren.

Bij registratie van het webhook-endpoint bij de producer, controleert de producer.

Het is de verantwoordelijkheid van de consumer om zich te registreren bij de producer voor
de berichten van gegevensleveringen die noodzakelijk zijn. De consumer levert hiervoor een
webhook-endpoint aan.

2.6. Producer

Een producer is een systeem dat voor één of meer gegevensuitwisselingen (in verschillende
ketensamenwerkingen) CloudEvents produceert en aflevert bij geregistreerde Intermediaries.

De producer houdt bij het opstellen van requests rekening met aan welke geregistreerde
partijen berichten dienen te worden aangeleverd (conform registratie) en stuurt de berichten
naar het registreerde afleverpunt (i.e. een webhook) van de Intermediary. Hierbij houdt de
producer rekening met eventuele verschillende versies die een bericht kan hebben.

Indien de producer eigenaar is van de berichtspecificatie, registreert de producer de
technische contracten bij het contract register (zie 2.9 Technische contracten).
Voor de producer gelden aanvullend de volgende richtlijnen:

e Een producer moet best-practices in event-driven architecturen ondersteunen om at-
least once produceren van events en exactly-once verwerking mogelijk te maken,
door middel van bijv. het transactioneel outbox patroon (paragraaf 2.12.3) en
idempotentie (hoofdstuk 3).

e Een producer moet rekening houden met rate-limiting van de intermediary en past
throttling toe waar nodig.

e Een producer mag CloudEvents bufferen en als batch aanleveren, indien de
ontvanger CloudEvents in batch ondersteunt.

o Een producer mag circuit breaking toepassen bij ongeplande niet-beschikbaarheid.

Edukoppeling — Asynchrone communicatie via RESTful API’s 13-25

edustandaard

2.7. Intermediary

De intermediary uit zich naar de buitenwereld als een beveiligd endpoint. Het endpoint
verwacht een payload in lijn met de CloudEvents standaard. Dit betreft daardoor twee
varianten:

1. Endpoint voor individuele CloudEvents berichten (verplicht)

2. Endpoint voor CloudEvents in batch (optioneel)

De intermediary registreert het technische contract van de webhook bij het contract register
(zie 2.9 Technische contracten).

De intermediary heeft een aantal taken:

a. accepteert het verzoek;

b. valideert het verzoek (minimaal de CloudEvents structuur);

c. persisteert het verzoek;

d. initieert verwerking bij de consumer (optioneel). Dit vindt plaats in geval van optie A
uit Figuur 3 - CloudEvents uitwisseling;

e. geeft een technische bevestiging dat het bericht is ontvangen. Functionele
verwerking vindt asynchroon plaats aan de kant van de consumer.

De intermediary mag rate-limiting toepassen om zijn systemen weerbaarder te maken. In het
algemeen wordt aangeraden om rate-limiting toe te passen per producer.

2.8. Consumer

De consumerende partij bepaalt hoe de ontvanger geimplementeerd wordt. Hier kunnen
verschillende patronen gebruikt worden zoals beschreven in Figuur 3 - CloudEvents
uitwisseling:
A. De consumer wacht op berichten voor verwerking die actief door de Intermediary
aangeleverd kunnen worden (PUSH).
B. De consumer haalt de berichten actief bij de intermediary (PULL).

Een consumer moet best-practices in event-driven architecturen ondersteunen om at-least
once consumeren van events en exactly-once verwerking mogelijk te maken, door middel
van bijv. idempotentie (hoofdstuk 3), retries, DLQ en replays.

2.9. Technische contracten

Ketenpartner bepalen altijd gezamenlijk wie welke contracten opstelt. Desondanks, stellen
we belangrijk richtlijnen op die kunnen worden gehanteerd. We hanteren de volgende
richtlijnen:

- De OpenAPI-specificatie (OAS) van de webhook wordt gedefinieerd door de
ontvangende partij.

- De AsyncAPI-specificatie (AAS), i.e. de business data, wordt gedefinieerd door de
producer, omdat deze eigenaar is van data en het gedrag. Hierbij stemt de producer
de specificatie af op de eisen van de mogelijke consumers. Datacontracten hanteren
idealiter waar mogelijk sectorstandaarden voor gegevensstructuren.

Edukoppeling — Asynchrone communicatie via RESTful API’s 14-25

edustandaard

Zoals elke richtlijn kan daar met goede argumentatie van afgeweken worden, indien
noodzakelijk. Zo kan het wenselijk zijn dat een partij die een centrale voorziening levert
afspraken maakt over welke gegevens ontvangen kunnen worden. Daarom bepalen
ketenpartners altijd gezamenlijk definitief wie de specificatie opstelt en onderhoudt.

2.9.1. Contract-register
Contracten worden op één plek geregistreerd door de partij die de specificatie definieert; elke
ketenpartner zal zo’n contract-register aanbieden. Deze plek, een contract-register, is de
bron van waarheid voor de betreffende specificatie.

Het is mogelijk om vanuit beveiligingsoogpunt eerst de specificatie over te zetten naar het
‘eigen’ intern register. Dit is weergegeven hieronder:

egister partij ﬁ Register partij B

Pull specificatie

Figuur 4: Interactie tussen registers partijen.

Andere partijen kunnen deze specificatie dan handmatig en/of geautomatiseerd ophalen om
de andere kant van de integratie op te zetten. Automatisering kan helpen om de
berichtspecificatie op te halen uit de bron en daaruit direct, of via een intern register dat een
kopie opslaat, automatisch code te generen.

Bijvoorbeeld als volgt:

- Register partij A bevat het AsyncAPI contract.

- Partij B haalt het contract over register A naar een eigen immutable register B.

- Een pipeline draagt zorg voor het ophalen van dit contract uit het interne register,
genereren, compileren, packaging en publicatie van het artifact naar een interne
repository.

- Een automatische dependency updater kan detecteren dat er een nieuwe versie
beschikbaar is, de versie ophogen en een ontwikkelaar laten besluiten of dit direct
doorgevoerd kan worden. Belangrijk: Een consumer applicatie beslist zelf wanneer
een upgrade plaatsvindt.

Consumer
applicatie
besluit

Pipeline
genereert

Haal over

: naar ,
Register (nieuwe)

versie

partij A register overstap naar
(nieuw)

versie.

partij B artifact.

Figuur 5: Voorbeeld proces over rol register en automatisering.

Edukoppeling — Asynchrone communicatie via RESTful API’s 15-25

edustandaard

2.10. CloudEvent beveiligingsopties

De beveiliging vindt plaats op twee niveaus:
- Applicatielaag: Maakt gebruik van het OAuth client credentials profiel voor RESTful
API’s.
- IT-infrastructuurlaag: Maakt gebruik van Transport Layer Security
(TLS) conform UBV TLS.

Dit Edukoppeling-profiel definieert geen aanvullende beveiligingsmechanismen. Zo geldt:

- De payload wordt niet aanvullend beveiligd. Dat is niet nodig omdat het uitgangspunt
machine-to-machine (M2M) is. Vooralsnog wordt de payload alleen
beveiligd in transport (TLS).

- Abuse protection zoals beschreven in de webhook standaard?® is niet nodig, omdat
OAuth2 al de toegang regelt tot het webhook-endpoint. Indien de consumer toegang
verleent aan de producer via OAuth2, wordt daarmee ook de producer goedgekeurd
om berichten naar de consumer te sturen.

De volgende voorschriften gelden wel voor CloudEvents:

- Context-attributen: Sensitieve informatie zou niet opgenomen moeten worden in
context-attributen aangezien producers, consumers en intermediairs deze attributen
mogen loggen.

- Domein specifieke data (data-attribuut): Domein specifieke event data wordt niet
versleuteld.

Aanvullende beveiliging afspraken worden, waar noodzakelijk, afgestemd tussen de
producers en consumers. Zo geldt:

a. Versleuteling is alleen noodzakelijk in scenario’s waar (niet vertrouwde)
tussenliggende componenten voor datalekken kunnen zorgen. Versleutelen is
rekenintensief en het maakt het bovendien moeilijker voor beveiligingsmechanismen,
zoals API-gateways, de payload te valideren en transformeren (indien nodig).

b. Ondertekening van gegevens is alleen nodig indien er een risico is dat de integriteit
van de gegevens aangetast kan worden of als onweerlegbare overdracht vereist
wordt.

16 https://qithub.com/cloudevents/spec/blob/v1.0.2/cloudevents/http-webhook.md

Edukoppeling — Asynchrone communicatie via RESTful API’s 16-25

https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/http-webhook.md

edustandaard

Bijlage A: Uitdagingen in een gedistribueerd

landschap

Een gedistribueerd IT-landschap bestaat uit meerdere systemen die met elkaar
communiceren door het uitwisselen van berichten. In die zin is er altijd sprake van een
zender en een ontvanger van een bericht. We moeten ervoor zorgen dat er geen berichten
verloren gaan of dubbel worden verwerkt. Dit zou namelijk leiden tot informatieverlies of
dubbele data.

Bijvoorbeeld: in een IT-landschap met een ordersysteem en een betaalsysteem moeten we
ervoor zorgen dat een order die in het ordersysteem wordt aangemaakt exact één keer
financieel wordt verwerkt.

Robuuste afthandeling betekent dat alle berichten (verzonden door een zender) exact één
keer door de ontvanger worden verwerkt, zonder aanvullende neveneffecten.

2.11. Traditionele uitdagingen in een gedistribueerd IT-landschap

Binnen de grenzen van één enkel systeem zorgen transacties ervoor dat of alle wijzigingen
of geen van de wijzigingen worden opgeslagen. Dit concept van atomiciteit zorgt ervoor dat
een transactie “alles of niets” is.

In een gedistribueerd IT-landschap is het echter, zonder aanvullende maatregelen die een
gedistribueerde transactie over systeemgrenzen heen waarborgen, niet mogelijk om twee (of
meer) systemen atomair bij te werken, omdat er in wezen sprake is van twee afzonderlijke
transacties.

Consistentie over gedistribueerde systemen kan wel worden geimplementeerd, maar dit gaat
ten koste van de schaalbaarheid. In de volgende paragrafen verkennen we traditionele
patronen om deze uitdagingen op te lossen binnen een microservices-architectuur of andere
systeem-tot-systeemkoppelingen.

In paragraaf beschrijven we traditioneel gebruikte patronen in een traditioneel gedistribueerd
IT-landschap.

2.12. Traditioneel gebruikte patronen in een gedistribueerd IT-landschap

2.12.1. Patroon: Two-phase commit (2PC)
Het two-phase commit-patroon wordt gebruikt om data op meerdere nodes in een
gedistribueerd systeem atomair, volgens het alles-of-niets-principe, op te slaan. De twee
fasen in dit patroon worden gecodrdineerd door één centrale codrdinator:
e Voorbereidingsfase (preparation phase): De codrdinator stuurt een verzoek naar alle
nodes en vraagt elke deelnemer te controleren of de transactie kan worden voltooid.
¢ Commitfase (commit phase): Als alle deelnemers positief hebben geantwoord, stuurt
de codrdinator een commit naar alle deelnemers. Als ten minste één deelnemer
negatief heeft geantwoord, stuurt de codrdinator een abort naar alle deelnemers.

Edukoppeling — Asynchrone communicatie via RESTful API’s 17-25

edustandaard

Belangrijk in dit patroon is dat elke deelnemer in de voorbereidingsfase de duurzaamheid
(durability) van de beslissing waarborgt.

2.12.2. Patroon: Saga-patroon
Het Saga-patroon is in essentie een reeks lokale transacties in afzonderlijke systemen. Deze
reeks kan op twee manieren worden gecodrdineerd:
o Elke lokale transactie publiceert berichten die lokale transacties in andere services
activeren; een choreografie van berichtensequenties.
e Een orchestrator instrueert de deelnemers welke lokale transacties zij in welke
volgorde moeten uitvoeren.

Binnen dit patroon moeten maatregelen worden genomen om een transactie “ongedaan te
maken” wanneer een vervolgstap door een deelnemer niet succesvol kan worden verwerkt.
Het ongedaan maken van een transactie is een compenserende actie, en geen strikte
rollback.

2.12.3. Patroon: Transactioneel outbox-patroon
Tijdens de verwerking van een businessoperatie schrijft een microservice het ‘vitgaande
bericht’ weg in een outbox-tabel binnen dezelfde transactie als de overige datawijzigingen.
Een achtergrondproces leest de outbox en publiceert de berichten op betrouwbare wijze
naar een message broker.

Dit zorgt ervoor dat er geen berichten verloren gaan wanneer de volledige businesslogica

niet succesvol wordt afgerond. Hierdoor worden atomaire writes mogelijk binnen het systeem
waarin de businessoperatie plaatsvond.

Edukoppeling — Asynchrone communicatie via RESTful API’s 18-25

edustandaard

3. Bijlage B: Richtlijnen voor idempotentie

In deze bijlage kijken we naar de praktische richtlijnen voor het implementeren van
idempotentie. Eerst bespreken we wanneer dit moet worden toegepast en vervolgens hoe.
Als laatst worden technische richtlijnen beschreven voor de implementatie.

3.1. Wanneer implementeren

Idempotentie zorgt ervoor dat het meerdere keren verwerken van hetzelfde bericht geen
schadelijke of onbedoelde neveneffecten of wijzigingen in de systeemtoestand veroorzaakt
en dat een deterministisch resultaat wordt gegarandeerd. Dit betekent ook dat niet alle
service-operaties hierdoor worden beinvloed. Sommige service-operaties zijn per definitie
idempotent. Enkele voorbeelden:

o Elke GET-operatie is idempotent, omdat deze geen toestand wijzigt.

o Elke PUT-operatie (volgens de specificaties) vervangt of wijzigt een resource.
Voorbeeld: PUT /account/123 met {balance: 100} moet het saldo van de rekening op
100 zetten. Opnieuw toepassen levert hetzelfde resultaat op. Order guarantee is
hierbij belangrijk.

o Elke DELETE-operatie is idempotent, omdat een entiteit niet meer dan één keer kan
worden verwijderd. Aandachtspunt is de response — zie sectie 3.2.1.

o POST-operaties kunnen wel of niet idempotent zijn, afhankelijk van de functionaliteit.
Voorbeeld: POST /transactions met { amount: 100, account: 123 } kan bij herhaling
opnieuw geld toevoegen aan rekening 123, wat leidt tot een onjuist saldo.
Voorbeeld: POST /email/send zal opnieuw een e-mail versturen (er is dus een
neveneffect).

3.2. Algemene richtlijnen

De aanbevolen manier om idempotentie te implementeren is door middel van een unieke
event-ID in elk bericht. De consumer kan dan de volgende eenvoudige logica toepassen:
e Kent de consumer het message-ID al? — Verwerp het bericht.
o Kent de consumer het message-ID nog niet? — Verwerk het bericht en sla het
message-ID op.

Om volledige atomiciteit te garanderen, wordt het message-ID opgeslagen in dezelfde
transactie als de daadwerkelijke businessverwerking.

Een goede message-ID moet globaal uniek, stabiel, deterministisch en compact genoeg zijn.
Dit message-ID moet door de producer worden gegenereerd.

3.2.1. Response
Elke idempotente service zorgt ervoor dat de response bij de eerste, tweede en derde
poging identiek is. Dit is met name relevant voor services die:
o Data aanmaken: de client wil doorgaans het identificatienummer van de
aangemaakte entiteit ontvangen.
o Data verwijderen: de client moet correcte foutafhandeling kunnen implementeren. Dit
zou niet mogelijk zijn als bij een tweede DELETE-aanroep een foutresponse wordt
teruggegeven.

Edukoppeling — Asynchrone communicatie via RESTful API’s 19-25

edustandaard

3.3. Technische implementatierichtlijnen: Idempotentie

Idempotentie zorgt ervoor dat meerdere identieke verzoeken hetzelfde effect hebben als één
enkel verzoek. Dit is cruciaal voor scenario’s waarin clients verzoeken opnieuw proberen te
versturen vanwege time-outs, netwerkfouten of onherstelbare fouten aan de clientzijde.

Deze technische richtlijnen zijn gebaseerd op een bestaand Internet Engineering Task Force
(IETF)-concept '” en bieden aanvullende richtlijinen om consistente implementatie en
efficiénte systeemintegratie binnen de onderwijssector te ondersteunen. Eerst worden de
idempotentieconventies binnen de sector beschreven, daarna volgt een gedetailleerd
implementatievoorbeeld op basis van deze conventies.

3.3.1. Idempotentieconventies

Alle operaties die resources aanmaken of muteren, typisch POST- en PATCH-operaties,
moeten een Idempotency-Key-header gebruiken. Hoewel DELETE-operaties per definitie ®
idempotent zijn, kunnen clients in een gedistribueerd systeem met retries inconsistente
responses krijgen. Daarom zouden DELETE-operaties ook een idempotency key moeten
gebruiken.

Elke operatie die niet voldoet aan de standaarden voor het gebruik van HTTP-methoden
en resources aanmaakt of wijzigt, moet eveneens worden meegenomen.

3.3.2. Uniekheid idempotentie sleutel
Een UUIDv4 2° (RFC4122) moet worden gebruikt als idempotentie-sleutel.

3.3.3. Geldigheid en verloop van idempotentie sleutel
De geldigheid en vervaldatum van de idempotency key zouden rekening moeten houden met
de tijd die nodig is voor automatische en/of handmatige retry-mechanismen en met de
mogelijkheid van herhalingen (worstcasescenario na een restore door de client).

De time-to-live (TTL) voor een idempotency-entry zouden gebaseerd moeten zijn op het
maximaal verwachte replay-venster: met andere woorden, het maximale tijdsvenster waarin
een bericht opnieuw kan worden aangeboden. Een vervalperiode van 7 dagen wordt
aanbevolen.

3.3.4. Idempotentie fingerprint
Voor extra veiligheid moet een idempotentie fingerprint worden aangemaakt. Aanbevolen
wordt om de volledige request-payload te gebruiken om deze fingerprint te genereren.

7 draft-ietf-httpapi-idempotency-key-header-07 - The Idempotency-Key HTTP Header Field
8 RFC 9110: HTTP Semantics

" RFC 9114: HTTP/3

20 RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace

Edukoppeling — Asynchrone communicatie via RESTful API’s 20-25

https://datatracker.ietf.org/doc/draft-ietf-httpapi-idempotency-key-header/
https://www.rfc-editor.org/rfc/rfc9110#section-9.2.2
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/rfc4122

edustandaard

3.3.5. Verantwoordelijkheden client
Clients moeten de idempotentie sleutel opslaan voor de volledige levensduur van de operatie
(oftewel de TTL die door de resource is gespecificeerd). Dit garandeert dat de sleutel uniek,
stabiel, deterministisch en constant blijft gedurende de operatie. De client MAG hiervoor het
transactional outbox-patroon gebruiken (zie bijlage A).

Clients moeten voor één idempotency key dezelfde request-payload versturen om HTTP
422-fouten van de resource te voorkomen.

Clients zouden automatische retries moeten stoppen nadat de TTL van de resource is
verlopen. Daarna kan de client er niet langer van uitgaan dat de resource de idempotentie
sleutel nog heeft opgeslagen. Handmatige bevestiging binnen de clientapplicatie zou dan
moeten worden gestart en een nieuw verzoek moet een nieuwe sleutel bevatten.

3.3.6. Verantwoordelijkheden resource
De resource moet bij een duplicaatverzoek de response retourneren van de eerder voltooide
operatie. Met name DELETE-verzoeken zouden ook dezelfde response moeten retourneren
als eerder.

Als de resource meerdere clients ondersteunt, moet de opslag van idempotency keys per
client worden gescheiden om het risico op botsingen te elimineren.

Om volledige atomiciteit te waarborgen, zou de idempotency key moeten worden
opgeslagen in dezelfde transactie als de daadwerkelijke businessverwerking.

3.3.7. Foutafhandeling
De resource moet de idempotency key valideren voordat verdere verwerking plaatsvindt. Als
een ongeldige idempotency key wordt aangeleverd, zou de resource moeten antwoorden
met een HTTP 400-statuscode.

3.3.8. Client side implementatie (voorbeeld)
De volgende informatie kan in een outbox worden vastgelegd volgens het transactional
outbox-patroon:

e event id
e event_type
e payload

e schema_version

e created_at

e expires_at (moment waarop het event niet langer geldig wordt verklaard, bijvoorbeeld
na het verstrijken van de TTL van de resource)

e idempotency_ key (de UUIDv4)

» status (pending, acknowledged, failed)

De logica aan de clientzijde kan er als volgt uitzien:

1. Een business-event wordt vastgelegd inclusief alle metadata.
2. Zoek business-events met status pending.

Edukoppeling — Asynchrone communicatie via RESTful API’s 21-25

edustandaard

3. Als expires_at > now(), zet de status op failed.
4. Anders:
a. Lees het business-event.
b. Exporteer het business-event en wacht op de response.
c. Als de response een 4XX-fout aangeeft, los het probleem in de applicatie op.
d. Als de response een 5XX-fout aangeeft, zet de status op failed.
e. Als de response succesvolle verwerking aangeeft, verwijder het business-event of
zet de status op acknowledged.

3.3.9. Resource implementatie (voorbeeld)
Alle API’s die resources aanmaken of muteren, typisch POST, DELETE en PATCH-
operaties, MOETEN een Idempotency-Key-header ondersteunen.

De volgende informatie kan worden opgeslagen in een idempotency key-tabel:
e idempotency_key
e idempotency_fingerprint (hash van het request)
e resource_id (indien van toepassing)
e client_id (indien van toepassing)
e response_status_code
e response_body
e created at
e expires_at

De validatie aan de resourcezijde kan er als volgt uitzien:

1. Valideer de aanwezigheid én het formaat van de idempotency key. Indien deze
ontbreekt of ongeldig is, retourneer een HTTP 400-fout.

2. Zoek de idempotency_key op voor resource_id + client_id in de tabel.

a. Indien aanwezig én de idempotency fingerprint niet overeenkomt, retourneer een
HTTP 422-fout.
b. Indien aanwezig, retourneer de opgeslagen response.

3. Probeer een idempotency-lockrecord te verkrijgen inclusief vervaltijd. Als dit mislukt,
verwerkt een ander proces deze key op dat moment en wordt een HTTP 409-fout
geretourneerd.

4. Start een transactie:

a. Verwerk de businesslogica.
b. Voeg het idempotency-record inclusief response toe aan de tabel.

5. Commit de transactie en geef de idempotency-lock vrij.

6. Retourneer de response van de businesslogica.

Daarnaast kan een automatisch proces de idempotency key-entries opschonen waarvoor
expires_at > now().

Edukoppeling — Asynchrone communicatie via RESTful API’s 22-25

edustandaard

4. Bijlage C: Begrippen

Antwoord: Een antwoord is de inhoudelijke reactie op een verzoek: het resultaat van een
operatie of vraag.

API aanbieder (ook wel API provider): Ketenpartner die binnen een ketensamenwerking een
RESTful API aanbiedt.

API afnemer (ook wel API provider): Ketenpartner die binnen een ketensamenwerking met
een systeem een RESTful APl afneemt.

Asynchroon: Bij asynchrone communicatie stuurt een computersysteem een bericht of event
en ontvangt hoogstens een bevestiging van ontvangst. De verwerking vindt losgekoppeld en
later plaats en levert geen direct antwoord op.

Atomiciteit: Binnen de grenzen van één enkel computersysteem zorgen transacties ervoor
dat &f alle wijzigingen 6f geen van de wijzigingen worden opgeslagen. Dit concept van
atomiciteit zorgt ervoor dat een transactie “alles of niets” is.

Bevestiging: Een bevestiging van ontvangst geeft alleen aan dat het bericht technisch correct
is ontvangen, niet dat het al is verwerkt.

Client secret: Een vertrouwelijke sleutel die alleen bekend is bij de client en afhankelijk van
de vorm (symmetrisch (wachtwoord) of asymmetrisch (PKI)) ook bij de Authorization Server.
Het wordt gebruikt om de client bij de Authorization Server te kunnen authenticeren via het
token endpoint.

Confidential client?': Een confidential client is een client die draait in een omgeving waar
vertrouwelijke gegevens (waaronder het client secret) veilig bewaard kunnen worden
(bijvoorbeeld server-side webapplicaties).

Consumer: Een “consumer” ontvangt het event en onderneemt actie op basis daarvan. De
consument gebruikt de context en de data om logica uit te voeren, wat kan leiden tot het
optreden van nieuwe events.

Consumeren: Het lezen/verkrijgen van een event vanuit de Intermediary.
Context: Contextmetadata zijn vastgelegd in de contextattributen. Tools en applicatiecode
kunnen deze informatie gebruiken om de relatie van events met onderdelen van het

computersysteem of met andere events te identificeren.

Data: Domeinspecifieke informatie (oftewel de payload). Dit kan informatie bevatten over de
gebeurtenis zelf, details over gewijzigde gegevens of andere relevante gegevens.

21 hitps://datatracker.ietf.org/doc/html/rfc6749#section-2.1

Edukoppeling — Asynchrone communicatie via RESTful API’s 23-25

https://datatracker.ietf.org/doc/html/rfc6749#section-2.1

edustandaard

DLQ (Dead Letter Queue): een aparte queue waarin events terechtkomen die na meerdere
retries niet succesvol verwerkt konden worden.

Deterministisch: Het resultaat is hetzelfde, ongeacht hoe vaak de operatie wordt herhaald.

Idempotentie: Het meerdere keren verwerken van een identiek verzoek veroorzaakt geen
schadelijke of onbedoelde neveneffecten of wijzigingen in de systeemtoestand en garandeert
een deterministisch resultaat.

Intermediary: Een “intermediary” ontvangt een bericht dat een event bevat met als doel dit
door te sturen naar de volgende ontvanger. Dit kan een andere intermediair of een
consument zijn. Een typische taak van een intermediair is het routeren van events naar
ontvangers op basis van de informatie in de context.

Order guarantee: Order guarantee is het concept dat berichten worden verwerkt in de
volgorde waarin ze zijn geproduceerd. Dit voorkomt dat een status wordt teruggezet naar
een oude waarde terwijl een nieuwere waarde al is verwerkt.

Producer: De “producer” is een specifieke instantie, proces of apparaat dat de datastructuur
aanmaakt die het CloudEvent beschrijft.
Produceren: Het creéren van een event en het afleveren ervan bij de Intermediary.

Replay: Het opnieuw aanbieden van eerder opgeslagen events om ze (opnieuw of alsnog) te
verwerken.

Retry: Het opnieuw proberen te verwerken van een event nadat de eerste verwerking is
mislukt, vaak vanuit een apart gezette queue.

RESTful APIl: Een RESTful API is een application programmable interface (API) die HTTP-
methoden, zoals GET, POST, PUT, PATCH en DELETE, gebruikt om resources te beheren.
Resources worden geidentificeerd via URIs (Uniform Resource Identifiers) en worden
doorgaans geretourneerd in JSON- of XML-formaat. We noemen ze RESTful omdat ze niet
aan alle REST?? principes?® hoeven te voldoen.

Synchroon: Bij synchrone communicatie stuurt een systeem een verzoek en wacht op het
antwoord (response). Dit antwoord wordt pas teruggestuurd nadat de verwerking is afgerond.

Verwerking: Verwerking is het daadwerkelijk uitvoeren van de businesslogica op basis van
het ontvangen bericht of verzoek.

22 REST - Wikipedia

23 Dit Edukoppeling-profiel gaat uit van vertrouwelijke gegevens waarbij ketenpartners weten wat ze van elke
vragen binnen een bepaalde ketensamenwerking. Ondersteuning van HATEOAS lijkt niet noodzakelijk.

Edukoppeling — Asynchrone communicatie via RESTful API’s 24-25

https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/HATEOAS

edustandaard

5. Bijlage D: Referenties

e CloudEvents standaard: https://github.com/cloudevents/spec/blob/v1.0.1/spec.md

o CloudEvents profiel Logius:
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/

e JSON Event Format: https://github.com/cloudevents/spec/blob/v1.0.1/json-
format.md

e Webhook: https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md

Edukoppeling — Asynchrone communicatie via RESTful API’s 25-25

https://github.com/cloudevents/spec/blob/v1.0.1/spec.md
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md

